https://www.selleckchem.com/products/vx-561.html Prymnesium parvum is a bloom forming haptophyte that has been responsible for numerous fish kill events across the world. The toxicity of P. parvum has been attributed to the production of large polyketide compounds, collectively called prymnesins, which based on their structure can be divided into A-, B- and C-type. The polyketide chemical nature of prymnesins indicates the potential involvement of polyketide synthases (PKSs) in their biosynthesis. However, little is known about the presence of PKSs in P. parvum as well as the potential molecular trade-offs of toxin biosynthesis. In the current study, we generated and analyzed the transcriptomes of nine P. parvum strains that produce different toxin types and have various cellular toxin contents. Numerous type I PKSs, ranging from 37 to 109, were found among the strains. Larger modular type I PKSs were mainly retrieved from strains with high cellular toxin levels and eight consensus transcripts were present in all nine strains. Gene expression variance analysis revealed potential molecular trade-offs associated with cellular toxin quantity, showing that basic metabolic processes seem to correlate negatively with cellular toxin content. These findings point towards the presence of metabolic costs for maintaining high cellular toxin quantity. The detailed analysis of PKSs in P. parvum is the first step towards better understanding the molecular basis of the biosynthesis of prymnesins and contributes to the development of molecular tools for efficient monitoring of future blooms.Large rivers are important terrestrial dissolved organic matter (DOM) sources to marginal seas, and dissolved organic nitrogen (DON) plays an essential role in DOM cycling. The Yellow River ranks as the fifth largest river (in length) in the world and is well-known for its high dissolved inorganic nitrogen (DIN) concentration and relatively low DON concentration, leading to extreme measuring unc