https://www.selleckchem.com/ The objective of this study was to determine the effects of increased supplemental Zn from differing sources on growth performance of steers fed diets differing in net energy. Angus steers (n = 72, 324 ± 2.1 kg) with Genemax gain scores of 3, 4, or 5 were blocked by BW and stratified by Genemax gain score into 12 pens of 6 steers each for 158 d. Pens were randomly assigned to 1 of 3 Zn treatments (ZNTRT) 1) control (no supplemental Zn, analyzed 33 mg Zn/kg DM; CON); 2) inorganic Zn (CON + 120 mg supplemental Zn/kg DM as ZnSO4 for entire trial; INZN); or 3) 120 mg supplemental Zn/kg DM as Zn-amino acid complex (Availa-Zn; Zinpro, Eden Prairie, MN) for first 60 d, then a blend of ZnSO4 and Zn-AA complex (CON + 60 mg supplemental Zn/kg DM as ZnSO4 + 60 mg supplemental Zn/kg DM as Zn-amino acid complex) for the remainder of the trial (ZNBLD). Two dietary energy strategies (ENERGY) were formulated to reach ADG rates of 1) 1.6 kg/d (LE) or 2) 2.0 kg/d (HE) utilizing a 3 × 2 factorial arrangement (12 steers/treatmenhan ZNBLD or CON (P ≤ 0.02), while ZIP14 was unaffected due to ZNTRT, ENERGY, or the interaction (P ≥ 0.39). Supplying supplemental Zn as ZNBLD during the transition period appeared to improve performance measures, but no final performance advantages were noted due to increased supplemental Zn, regardless of source. Additionally, differences in liver MT1A expression may indicate differing post-absorptive metabolism between Zn sources.Understanding the phenotypic factors that affect lamb live weight and carcass composition is imperative to generating accurate genetic evaluations and further enables implementation of functional management strategies. This study investigated phenotypic factors affecting live weight across the growing season and traits associated with carcass composition in lambs from a multibreed sheep population. Four live weight traits and two carcass composition traits were considered for analysis namely; birth, prew