https://www.selleckchem.com/products/AZD0530.html These compound antigens are the result of an interaction between ABO, H, SE, and LE genes.The Kidd-null phenotype, Jk(a-b-), is rare, and a patient with this phenotype may develop anti-Jk3, a red blood cell (RBC) antibody reactive with a domain common to both Jka and Jkb. Like other antibodies to high-prevalence antigens, the presence of this antibody poses challenges in the immunohematologic evaluation of these patients. Thoughtful laboratory testing is necessary to resolve the antibody specificity and to reveal other underlying antibodies. Moreover, the rarity of the Kidd-null phenotype makes finding blood donors difficult for those who need transfusion and have developed anti-Jk3. This review describes methods used in identifying anti-Jk3 in four pregnant patients. Blood bank records were retrospectively reviewed to illustrate the common approach in anti-Jk3 identification. In all cases, pertinent blood bank history was gathered, and extended RBC phenotyping was performed, followed by adsorption studies and testing of selected RBCs. Underlying antibodies were found in two of the cases. This revk history was gathered, and extended RBC phenotyping was performed, followed by adsorption studies and testing of selected RBCs. Underlying antibodies were found in two of the cases. This review also reiterates some common challenges encountered with Kidd antibody analysis and highlights the importance of patient ethnic ancestry and obtaining accurate patient transfusion history.Platelets are small but very abundant blood cells that play a key role in hemostasis, contributing to thrombus formation at sites of injury. The ability of platelets to perform this function, as well as functions in immunity and inflammation, is dependent on the presence of cell surface glycoproteins and changes in their quantity and conformation after platelet stimulation. In this article, we describe the characterization of platelet surface markers