https://www.selleckchem.com/products/meclofenamate-sodium.html Dual-energy X-ray absorptiometry is currently the standard and validated tool for measurement of bone mineral density and for the evaluation of osteoporosis. Current densitometry scanners based on dual-energy X-ray absorptiometry method produce two X-ray beams with different energies to differentiate the overlapped soft tissue and bony structures, by creating two different attenuation profiles. Procedural guidelines are available to technicians and physicians to guarantee the best practice, including consistent positioning during scanning and standard reporting. However, similar to other imaging modalities, dual-energy X-ray absorptiometry may be influenced by technical errors, and thus, imaging artifacts may arise and accuracy and precision of the results may be influenced. This issue may, in turn, affect the final result and interpretation. Hence, the article is arranged with the intention of presenting some less common and rare technical and patient-related sources of error and resultant artifacts, from poor patient preparation to acquisition and data processing. Where appropriate, the corresponding tables of densitometric results (bone mineral density) and statistical parameters (T- and Z-scores) are provided. 3D Holography is a commercially available, disruptive innovation, which can be customised as per the requirements and is supporting Industry 4.0. The purpose of this paper is to study the potential applications of 3D holography in the medical field. This paper explores the concept of holography and its significant benefits in the medical field. The paper is derived through the study of various research papers on Holography and its applications in the medical field. The study tries to identify the direction of research &development and see how this innovative technology can be used effectively for better treatment of patients. Holography uses digital imaging inputs and provides an extensive visu