Tumor necrosis factor-α-induced protein 8 (TNFAIP8) is a member of TIPE/TNFAIP8 family, has been involved in the development and progression of various human cancers. We hypothesized that TNFAIP8 promotes prostate cancer (PCa) progression via regulation of oxidative phosphorylation (OXPHOS) and glycolysis. Ectopic expression of TNFAIP8 increased PCa cell proliferation/migration/spheroid formation by enhancing cell metabolic activities. Mechanistically, TNFAIP8 activated the PI3K-AKT pathway and up-regulated PCa cell survival. TNFAIP8 was also found to regulate the expression of glucose metabolizing enzymes, enhancing glucose consumption, and endogenous ATP production. Treatment with a glycolysis inhibitor, 2-deoxyglucose (2-DG), reduced TNFAIP8 mediated glucose consumption, ATP production, spheroid formation, and PCa cell migration. By maintaining mitochondrial membrane potential, TNFAIP8 increased OXPHOS and glycolysis. https://www.selleckchem.com/products/AZD2281(Olaparib).html Moreover, TNFAIP8 modulates the production of glycolytic metabolites in PCa cells. Collectively, our data suggest that TNFAIP8 exerts its oncogenic effects by enhancing glucose metabolism and by facilitating metabolic reprogramming in PCa cells. Therefore, TNFAIP8 may be a biomarker associated with prostate cancer and indicate a potential therapeutic target.Atherosclerosis (AS) is a chronic inflammatory vascular disease characterized by the accumulation of lipids and inflammatory debris in large arteries, high morbidity, and AS-related disease mortality. AS is a complex process, involving endothelial cell dysfunction and inflammation, smooth muscle cell proliferation, and macrophage activation. However, the currently available therapies for AS are not ideal, thus requiring development of novel treatment strategies. Exosomes are bi-lipid membranous extracellular containing multifarious cargo, such as proteins, lipids, micro ribonucleic acid (miRNAs), messenger RNAs, and long non-coding RNAs. Moreover, exosomes reportedly participate in various AS processes. Specifically, stem cell-derived exosomes can regulate the occurrence and development of AS, exhibiting the ability to overcome the limitations associated with AS treatment and stem cell therapy. In this paper, we review the pathological mechanism of AS and discuss the role of exosomes and stem cell-derived exosomes in AS progression. We conclude by suggesting new therapeutic strategies for treating AS with stem cell-derived exosomes in the hope of improving the clinical treatment of AS. High-volume systemic-to-pulmonary ductus arteriosus shunts in premature infants are associated with adverse neonatal outcomes. The role of an atrial communication (AC) in modulating the effects of a presumed hemodynamically significant patent ductus arteriosus (PDA) is poorly studied. The objective of this study was to characterize the relationship between early AC and echocardiographic indices of PDA shunt volume and clinical neonatal outcomes. A retrospective review of preterm infants (born at <32weeks' gestation) who underwent echocardiography in the first postnatal week was performed. The cohort was divided into four groups on the basis of presence of a presumed hemodynamically significant PDA (≥1.5 vs<1.5mm) and AC size (≤1 vs>1mm), and echocardiographic measures of PDA shunt volume were then compared. Clinical outcomes, including chronic lung disease and intraventricular hemorrhage, were also compared among all four groups. A total of 199 preterm infants (mean birth weight, 928±632g; meanture infants. Future investigations should evaluate if early identification and treatment of patients with both high-volume PDAs and larger atrial-level communications may help mitigate adverse outcomes, such as chronic lung disease or death, in this high-risk patient population. 1 mm in patients with PDAs ≥ 1.5 mm during the first postnatal week may be a marker of a more pathologic hemodynamically significant PDA in premature infants. Future investigations should evaluate if early identification and treatment of patients with both high-volume PDAs and larger atrial-level communications may help mitigate adverse outcomes, such as chronic lung disease or death, in this high-risk patient population.Huangshan Gongju was extracted with organic solvents (ethanol, methanol and acetone) of different concentrations (0-90%), and the extracts' phenolic content and antioxidant activity, as well as the correlations between them were examined. With the increasing concentration of organic solvent, the total phenolic compound (TPC) increased continuously and met its maximum at 70% acetone, whereas the total flavonoid compound (TFC) and most individual phenolics met their maximums at 70% ethanol. Similar changes occurred to the antioxidant activity, including DPPH and ABTS scavenging activities, and their maximums were respectively found at 50% acetone and 70% ethanol. The antioxidant activity correlated strongly with TPC/TFC (r > 0.954, p 0.975, p less then 0.001). These results suggested that high content organic solvent (50-70%) was beneficial to obtain Huangshan Gongju extracts of higher phenolic content and antioxidant activity, and 70% ethanol may be the promising solvent. Besides, phenolics were found to be the main antioxidants of Huangshan Gongju extracts, and flavonoids especially luteolin-7-O-glucoside may play more important roles in the antioxidant activity.The lateral hypothalamus (LH) is implicated in the physiological and behavioral responses during stressful events. However, the local neurochemical mechanisms related to control of stress responses by this hypothalamic area are not completely understood. Therefore, in this study we evaluated the involvement of CRFergic neurotransmission acting through the CRF1 receptor within the LH in cardiovascular responses evoked by an acute session of restraint stress in rats. For this, we investigated the effect of bilateral microinjection of different doses (0.01, 0.1 and 1 nmol/100 nL) of the selective CRF1 receptor antagonist CP376395 into the LH on arterial pressure and heart rate increases and decrease in tail skin temperature evoked by acute restraint stress. We found that all doses of the CRF1 receptor antagonist microinjected into the LH decreased the restraint-evoked tachycardia, but without affecting the arterial pressure and tail skin temperature responses. Additionally, treatment of the LH with CP376395 at the doses of 0.