Avoidance behavior is a key symptom of most anxiety disorders and a central readout in animal research. However, the quantification of real-life avoidance behavior in humans is typically restricted to clinical populations, who show actual avoidance of phobic objects. In experimental approaches for healthy participants, many avoidance tasks utilize button responses or a joystick navigation on the screen as indicators of avoidance behavior. To allow the ecologically valid assessment of avoidance behavior in healthy participants, we developed a new automated immersive Virtual Reality paradigm, where participants could freely navigate in virtual 3-dimensional, 360-degrees scenes by real naturalistic body movements. A differential fear conditioning procedure was followed by three newly developed behavioral tasks to assess participants' avoidance behavior of the conditioned stimuli an approach, a forced-choice, and a search task. https://www.selleckchem.com/products/ly3537982.html They varied in instructions, degrees of freedom, and high or low task-related relevance of the stimuli. We initially examined the tasks in a quasi-experiment (N = 55), with four consecutive runs and various experimental adaptations. Here, although we observed avoidance behavior in all three tasks after additional reinforcement, we only detected fear-conditioned avoidance behavior in the behavioral forced-choice and search tasks. These findings were largely replicated in a confirmatory experiment (N = 72) with randomized group allocation, except that fear-conditioned avoidance behavior was only manifest in the behavioral search task. This supports the notion that the behavioral search task is sensitive to detect avoidance behavior after fear conditioning only, whereas the behavioral approach and forced-choice tasks are still able to detect "strong" avoidance behavior after fear conditioning and additional reinforcement.Purpose To explore the effects of physical activity (PA) intervention on executive function (EF) and motor skills (MS) among children with attention deficit hyperactivity disorder and/or autism spectrum disorder (ASD). Methods Relevant studies were sourced from PubMed, Web of Science, EMBASE, Cochrane Library, CNKI and Wanfang Data. Only randomized controlled trials (RCT) were included based upon the following criteria (1) participants were children and clinically diagnosed with ADHD/ASD, (2) intervention strategies were identified as chronic physical activity, and (3) EF (e.g., cognitive flexibility) and/or MS (e.g., gross motor skills) were measured at baseline and post-intervention and compared with an eligible control group. Results Eleven studies involving 346 participants were finally identified. PA elicited significant improvements in EF and MS in children with ADHD/ASD. Regarding changes in the EF of participants, PA showed a great improvement in overall EF [standardized mean difference (SMD) 0.90, 95% confidence interval (CI) 0.49-1.30, p less then 0.00001], inhibitory control (SMD 1.30, 95% CI 0.58-2.02, p = 0.0004) and cognitive flexibility (SMD 0.85, 95% CI 0.42-1.29, p = 0.0001), but no significant improvement in working memory (SMD 0.28, 95% CI -0.15-0.71, p = 0.20). Significant improvements were also found with respect to gross motor skills (SMD 0.80, 95% CI 0.30-1.30, p = 0.002), but no significant changes were found in fine motor skills (SMD 0.30, 95% CI -0.91-1.52, p = 0.62). Conclusion Chronic PA interventions may promote EF and MS in children with ADHD/ASD, especially in inhibitory control, cognitive flexibility, and gross motor skills. However, PA interventions seemed to have insignificant effects on working memory and fine motor skills to children with ADHD/ASD. PROSPERO registration number CRD42019118622.Whereas the postrhinal cortex (POR) is a critical center for the integration of egocentric and allocentric spatial information, the perirhinal cortex (PRC) plays an important role in the encoding of objects that supports spatial learning. The POR and PRC send afferents to the hippocampus, a structure that builds complex associative memories from the spatial experience. Hippocampal encoding of item-place experience is accompanied by the nuclear expression of immediate early gene (IEGs). Subfields of the Cornus ammonius and subregions of the hippocampus exhibit differentiated and distinct encoding responses, depending on whether the spatial location and relationships of large highly visible items (macroscale encoding) or small partially concealed items (microscale encoding), is learned. But to what extent the PRC and POR support hippocampal processing of different kinds of item-place representations is unclear. Using fluorescence in situ hybridization (FISH), we examined the effect of macroscale (overt, landmark) and microscale (subtle, discrete) item-place learning on the nuclear expression of the IEG, Arc. We observed an increase in Arc mRNA in the caudal part of PRC area 35 and the caudal part of the POR after macroscale, but not microscale item-place learning. The caudal part of PRC area 36, the rostral and middle parts of PRC areas 35 and 36, as well as the middle part of the POR responded to neither type of item. These results suggest that macroscale items may contain a strong identity component that is processed by specific compartments of the PRC and POR. In contrast small, microscale items are not encoded by the POR or PRC, indicating that item dimensions may play a role in the involvement of these structures in item processing.The prefrontal cortex plays a key role in emotional state. Electroencephalography (EEG) studies have reported relationships between frontal asymmetry in the alpha band, emotional state, and emotion-related motivation. The current study investigated whether the positive or negative valence of emotional stimulation or the behavioral intention to either facilitate or suppress one's facial expression in response to these stimuli is reflected in relevant changes in frontal EEG asymmetry. EEG was recorded while participants either produced a facial expression that was in accord with positive or negative feelings corresponding to image stimuli, or suppressed their facial expressions. The laterality index of frontal alpha power indicated greater relative right frontal activity while participants suppressed facial expression compared with facilitating facial expression during emotional stimulation. However, there was no difference in frontal asymmetry between the presentation of image stimuli showing facial expressions corresponding to positive vs.