https://www.selleckchem.com/products/acetalax-oxyphenisatin-acetate.html A strategy for one-pot and large-scale synthesis of functionalized core-shell nanowires (NWs) to high-efficiently construct single nanowire electrodes is proposed. Based on the polymerization reaction between 3,4-ethylenedioxythiophene (EDOT) and noble metal cations, manifold noble metal nanoparticles-polyEDOT (PEDOT) nanocomposites can be uniformly modified on the surface of any nonconductive NWs. This provides a facile and versatile approach to produce massive number of core-shell NWs with excellent conductivity, adjustable size, and well-designed properties. Nanoelectrodes manufactured with such core-shell NWs exhibit excellent electrochemical performance and mechanical stability as well as favorable antifouling properties, which are demonstrated by in situ intracellular monitoring of biological molecules (nitric oxide) and unraveling its relevant unclear signaling pathway inside single living cells.Hydrogen binding of molecules on solid surfaces is an attractive interaction that can be used as the driving force for bond activation, material-directed assembly, protein protection, etc. However, the lack of a quantitative characterization method for hydrogen bonds (HBs) on surfaces seriously limits its application. We measured the standard Gibbs free energy change (ΔG0 ) of on-surface HBs using NMR. The HB-accepting ability of the surface was investigated by comparing ΔG0 values employing the model biomass platform 5-hydroxymethylfurfural on a series of Co-N-C-n catalysts with adjustable electron-rich nitrogen-doped contents. Decreasing ΔG0 improves the HB-accepting ability of the nitrogen-doped surface and promotes the selectively initiated activation of O-H bonds in the oxidation of 5-hydroxymethylfurfural. As a result, the reaction kinetics is accelerated. In addition to the excellent catalytic performance, the turnover frequency (TOF) for this oxidation is much higher than for reported non