Previous monitoring at Great Bay National Wildlife Refuge (NWR), Newington, New Hampshire documented high prevalence of amphibian malformations at sites contaminated with potential endocrine active compounds. In the present study, a combination of in situ and laboratory experiments were used to determine whether contaminants present in the sites affect amphibian growth and reproductive development. Wood frog (Rana sylvatica) tadpoles were exposed in situ at four sites (Ferry Way, Beaver Pond, Lower Peverly, and Stubbs Pond) at Great Bay NWR and northern leopard frog (Rana pipiens) tadpoles were exposed in the lab to sediments collected from three sites (Beaver Pond, Ferry Way, Stubbs Pond) at Great Bay NWR as well as a positive (estradiol) and negative control. High mortality was observed at Stubbs Pond and extended larval period at Beaver Pond in the in situ exposure. Only three malformations were noted in the lab experiment, whereas there was a 63% prevalence of rounded femurs in Beaver Pond metamorphs in the in situ exposure. Only 2.4% (5 of 207) of R. sylvatica metamorphs exhibited abnormal reproductive development, whereas intersex metamorphs occurred in treatments and controls in the lab experiment at rates as high as 26%. Reproductive development was more advanced and estradiol to androgen ratios reduced in male metamorphs from Beaver Pond in both the in situ and lab exposures. DDT, PCBs, and PAHs were detected in sediments at Great Bay NWR at concentrations that exceed regulatory or guidance values, with concentrations of PAHs being highest at Lower Peverly Pond and DDT highest at Stubbs Pond. The effects on anuran development may be attributable to the primary contaminants-DDT and PCBs-acting on the thyroid and gonadal axes.TRPA1 is a Ca2+-permeable, non-selective cation channel that is activated by thermal and mechanical stimuli, an amazing variety of potentially noxious chemicals, and by endogenous molecules that signal tissue injury. The expression of this channel in nociceptive neurons and epithelial cells puts it at the first line of defense and makes it a key determinant of adaptive protective behaviors. For the same reasons, TRPA1 is implicated in a wide variety of disease conditions, such as acute, neuropathic, and inflammatory pains, and is postulated to be a target for therapeutic interventions against acquired diseases featuring aberrant sensory functions. The human TRPA1 gene can bare mutations that have been associated with painful conditions, such as the N855S that relates to the rare familial episodic pain syndrome, or others that have been linked to altered chemosensation in humans. Here, we review the current knowledge on this field, re-evaluating some available functional data, and pointing out the aspects that in our opinion require attention in future research. We make emphasis in that, although the availability of the human TRPA1 structure provides a unique opportunity for further developments, far more classical functional studies using electrophysiology and analysis of channel gating are also required to understand the structure-function relationship of this intriguing channel.In the original publication of the article, values of "Genes" NPC6 was out of order in Table 1.Gamma radiation sterilization is the method used by the majority of tissue banks to reduce disease transmission from infected donors to recipients through bone allografts. https://www.selleckchem.com/products/azd3229.html However, many studies have reported that gamma radiation impairs the structural and mechanical properties of bone via formation of free radicals, the effect of which could be reduced using free radical scavengers. The aim of this study is to examine the radioprotective role of hydroxytyrosol (HT) and alpha lipoic acid (ALA) on the mechanical properties of gamma-sterilized cortical bone of bovine femur, using three-point bending and microhardness tests. Specimens of bovine femurs were soaked in ALA and HT for 3 and 7 days, respectively, before being exposed to 35-kGy gamma radiation. In unirradiated samples, both HT and ALA pre-treatment improved the cortical bone bending plastic properties (maximum bending stress, maximum bending strain, and toughness) without affecting microhardness. Irradiation resulted in a drastic reduction of the plastic properties and an increased microhardness. ALA treatment before irradiation alleviated the aforementioned reductions in maximum bending stress, maximum bending strain, and toughness. In addition, under ALA treatment, the microhardness was not increased after irradiation. For HT treatment, similar effects were found. In conclusion, the results indicate that HT and ALA can be used before irradiation to enhance the mechanical properties of gamma-sterilized bone allografts.The original article included a statement which is not fully accurate. This correction clarifies the original statement.Objective Detection of explosives is a challenge due to the use of improvised and concealed bombs. Post-bomb strike bodies are handled by emergency and forensic teams. We aimed to determine whether medical dual-energy computed tomography (DECT) algorithm and prediction model can readily detect and distinguish a range of explosives on the human body during disaster victim identification (DVI) processes of bombings. Materials and methods A medical DECT of 8 explosives (Semtex, Pastex, Hexamethylene triperoxide diamine, Acetone peroxide, Nitrocellulose, Pentrite, Ammonium Nitrate, and classified explosive) was conducted ex-vivo and on an anthropomorphic phantom. Hounsfield unit (HU), electron density (ED), effective atomic number (Zeff), and dual energy index (DEI),were compared by Wilcoxon signed rank test. Intra-class (ICC) and Pearson correlation coefficients (r) were computed. Explosives classification was performed through a prediction model with test-retest samples. Results Except for DEI (p = 0.036), means of HU, ED, and Zeff were not statistically different (p > 0.05) between explosives ex-vivo and on the phantom (r > 0.80). Intra- and inter-reader ICC were good to excellent 0.806 to 0.997 and 0.890, respectively. Except for the phantom DEI, all measurements from each individual explosive differed significantly. HU, ED, Zeff, and DEI differed depending on the type of explosive. Our decision tree provided Zeff and ED for explosives classification with high accuracy (83.7%) and excellent reliability (100%). Conclusion Our medical DECT algorithm and prediction model can readily detect and distinguish our range of explosives on the human body. This would avoid possible endangering of DVI staff.