https://www.selleckchem.com/products/kd025-(slx-2119).html Magnetic resonance imaging (MRI) could assist in identifying objective biomarkers and follow-up study could effectively improve subjective diagnostic accuracy. By combining MRI with follow-up, this study aims to determine the shared and distinct alterations between major depressive disorder (MDD) and bipolar disorder (BD). Untreated patients with MDD experiencing the first episode were subjected to MRI and subsequent follow-up. Fifteen patients with mania or hypomania were regrouped into BD group. Twenty patients were still grouped as MDD after an average of 37.95 months follow-up. Thirty healthy controls (HCs) were recruited to match the patients. Gray matter volume (GMV) and amygdala-seed functional connectivity (FC) in the whole brain were detected and compared among the three groups. GMV analysis revealed that the MDD and BD groups presented reduced GMV predominantly in the parietal, occipital, and frontal regions in the bilateral cerebrum compared with the HCs. The BD group had reduced GMV predominantly in the parietal, temporal, insular regions and the Rolandic operculum in the right-side cerebrum compared with MDD and HC groups. FC analysis revealed that the MDD and BD patients displayed increased FC values mainly in the bilateral parietal, and left occipital regions. Only the BD group displayed increased FC values in the temporal, occipital, parietal and limbic regions in the right-side cerebrum relative to HCs. The main limitation is the relatively small sample size. Alterations in the cortical regions and cortico-limbic neural system may provide the scientific basis for differential diagnosis in affective disorders. Alterations in the cortical regions and cortico-limbic neural system may provide the scientific basis for differential diagnosis in affective disorders. The association between loneliness and suicide is poorly understood. We investigated how living alone, loneliness and emotional suppor