We demonstrate the ability of all the formed surface structures to reduce the adhesion of Escherichia coli (E. coli) bacteria and show that fs-LIPSSs enjoys superior antibacterial adhesion properties due to its large-scale surface coverage. Approximately 99.03% of the fs-LIPSSs surface is free from bacterial adhesion. The demonstrated physical inhibition of bacterial colonies and biofilm formation without antibiotics is a crucial step towards reducing antimicrobial-resistant infections. © 2019 The Authors.Winter wheat is an important crop in the UK, suited to the typical weather conditions in the current climate. In a changing climate the increased frequency and severity of adverse weather events, which are often localised, are considered a major threat to wheat production. In the present study we assessed a range of adverse weather conditions, which can significantly affect yield, under current and future climates based on adverse weather indices. We analysed changes in the frequency, magnitude and spatial patterns of 10 adverse weather indices, at 25 sites across the UK, using climate scenarios from the CMIP5 ensemble of global climate models (GCMs) and two greenhouse gas emissions (RCP4.5 and RCP8.5). The future UK climate is expected to remain favourable for wheat production, with most adverse weather indicators reducing in magnitude by the mid-21st century. Hotter and drier summers would improve sowing and harvesting conditions and reduce the risk of lodging. The probability of late frosts and heat stress during reproductive and grain filling periods would likely remain small in 2050. Wetter winter and spring could cause issues with waterlogging. The severity of drought stress during reproduction would generally be lower in 2050, however localised differences suggest it is important to examine drought at a small spatial scale. Prolonged water stress does not increase considerably in the UK, as may be expected in other parts of Europe. Climate projections based on the CMIP5 ensemble reveal considerable uncertainty in the magnitude of adverse weather conditions including waterlogging, drought and water stress. The variation in adverse weather conditions due to GCMs was generally greater than between emissions scenarios. Accordingly, CMIP5 ensembles should be used in the assessment of adverse weather conditions for crop production to indicate the full range of possible impacts, which a limited number of GCMs may not provide. © 2019 The Authors.A novel methodology is proposed to robustly map oil seed rape (OSR) flowering phenology from time series generated from the Copernicus Sentinel-1 (S1) and Sentinel-2 (S2) sensors. The time series are averaged at parcel level, initially for a set of 229 reference parcels for which multiple phenological observations on OSR flowering have been collected from April 21 to May 19, 2018. The set of OSR parcels is extended to a regional sample of 32,355 OSR parcels derived from a regional S2 classification. The study area comprises the northern Brandenburg and Mecklenburg-Vorpommern (N) and the southern Bavaria (S) regions in Germany. A method was developed to automatically compute peak flowering at parcel level from the S2 time signature of the Normalized Difference Yellow Index (NDYI) and from the local minimum in S1 VV polarized backscattering coefficients. https://www.selleckchem.com/products/puromycin-aminonucleoside.html Peak flowering was determined at a temporal accuracy of 1 to 4 days. A systematic flowering delay of 1 day was observed in the S1 detection compared to S2. Peacombined with weather data to support in-season predictions of OSR yield, area, and production. Our approach identified the unique temporal signatures of S1 and S2 associated with OSR flowering and can now be applied to monitor OSR phenology for parcels across the globe. © 2020 The Authors.The soil water retention curve is one of the most important properties used to predict the amount of water available to plants, pore size distribution and hydraulic conductivity, as well as knowledge for drainage and irrigation modeling. Depending on the method of measurement adopted, the water retention curve can involve the application of several wetting and drying (W-D) cycles to a soil sample. The method assumes soil pore structure is constant throughout however most of the time soil structure is dynamic and subjected to change when submitted to continuous W-D. Consequently, the pore size distribution, as well as other soil morphological properties can be affected. With this in mind, high resolution X-ray Computed micro-Tomography was utilized to evaluate changes in the soil pore architecture following W-D cycles during the procedure of the water retention curve evaluation. Two different soil sample volumes were analyzed ROIW (whole sample) and ROIHC (the region close to the bottom of the sample). The second region was selected due to its proximity to the hydraulic contact of the soil with the water retention curve measurement apparatus. Samples were submitted to the following W-D treatments 0, 6 and 12 W-D. Results indicated the soil changed its porous architecture after W-D cycles. The image-derived porosity did not show differences after W-D cycles for ROIW; while for ROIHC it increased porosity. The porosity was also lower in ROIHC in comparison to ROIW. Pore connectivity improved after W-D cycles for ROIHC, but not for ROIW. W-D cycles induced more aligned pores for both ROIs as observed by the tortuosity results. Pore shape showed changes mainly for ROIW for the equant and triaxial shaped pores; while pore size was significantly influenced by the W-D cycles. Soil water retention curve measurements showed that W-D cycles can affect water retention evaluation and that the changes in the soil morphological properties can play an important role in it. © 2020 The Authors. Published by Elsevier B.V.The effectiveness of granular activated carbon (GAC) for carcinogenic volatile organic compounds (cVOCs) has not been evaluated in the low- to sub- microgram per liter range. Rapid small scale column tests (RSSCTs) were employed to determine the GAC performance at empty bed contact times (EBCTs) of 7.5 and 15 minutes for 13 cVOCs at a target influent concentration of 5 μg/L in a typical groundwater matrix. Breakthrough was assessed for vinyl chloride, dichloromethane, 1,1-dichloroethane, 1,2-dichloroethane, 1,2-dichloropropane, carbon tetrachloride, 1,3-butadiene, 1,1,1,2-tetrachloroethane, 1,2,3-trichloropropane, trichloroethylene and tetrachloroethylene. The throughput to breakthrough was found to be linearly correlated to capacities calculated with single-solute equilibrium isotherm parameters. Modest decreases, 9 to 13% on average, in throughput to 50% and 75% breakthrough were found when the EBCT was increased from 7.5 to 15 minutes. The carbon use rate (CUR), when scaled to simulate full-scale adsorption, indicated that GAC would be a viable technology for seven of the VOCs evaluated, with a CUR threshold less than 0.