The emergence and spread of drug-resistant Mycobacterium tuberculosis strains (including MDR, XDR, and TDR) force scientists worldwide to search for new anti-tuberculosis drugs. We have previously reported a number of imidazo[1,2-b][1,2,4,5]tetrazines - putative inhibitors of mycobacterial eukaryotic-type serine-threonine protein-kinases, active against M. tuberculosis. Whole genomic sequences of spontaneous drug-resistant M. smegmatis mutants revealed four genes possibly involved in imidazo[1,2-b][1,2,4,5]tetrazines resistance; however, the exact mechanism of resistance remain unknown. We used different approaches (construction of targeted mutants, overexpression of the wild-type (w.t.) and mutant genes, and gene-expression studies) to assess the role of the previously identified mutations. We show that mutations in MSMEG_1380 gene lead to overexpression of the mmpS5-mmpL5 operon in M. smegmatis, thus providing resistance to imidazo[1,2-b][1,2,4,5]tetrazines by increased efflux through the MmpS5-MmpL5 system, similarly to the mechanisms of resistance described for M. tuberculosis and M. abscessus. Mycobacterial MmpS5-MmpL5 transporters should be considered as an MDR-efflux system and they should be taken into account at early stages of anti-tuberculosis drug development.Acute and chronic liver failure is a highly prevalent medical condition with high morbidity and mortality. Currently, the therapy is orthotopic liver transplantation. However, in some instances, chiefly in the setting of metabolic diseases, transplantation of individual cells, specifically functional hepatocytes, can be an acceptable alternative. The gold standard for this therapy is the use of primary human hepatocytes, isolated from livers that are not suitable for whole organ transplantations. Unfortunately, primary human hepatocytes are scarcely available, which has led to the evaluation of alternative sources of functional hepatocytes. In this review, we will compare the ability of most of these candidate alternative cell sources to engraft and repopulate the liver of preclinical animal models with the repopulation ability found with primary human hepatocytes. We will discuss the current shortcomings of the different cell types, and some of the next steps that we believe need to be taken to create alternative hepatocyte progeny capable of regenerating the failing liver.Alginate is a natural polysaccharide present in various marine brown seaweeds. Alginate oligosaccharide (AOS) is a degradation product of alginate, which has received increasing attention due to its low molecular weight and promising biological activity. The wide-ranging biological activity of AOS is closely related to the diversity of their structures. AOS with a specific structure and distinct applications can be obtained by different methods of alginate degradation. This review focuses on recent advances in the biological activity of alginate and its derivatives, including their anti-tumor, anti-oxidative, immunoregulatory, anti-inflammatory, neuroprotective, antibacterial, hypolipidemic, antihypertensive, and hypoglycemic properties, as well as the ability to suppress obesity and promote cell proliferation and regulate plant growth. We hope that this review will provide theoretical basis and inspiration for the high-value research developments and utilization of AOS-related products.Fucoidans are a class of fucose-rich sulfated polysaccharides derived from brown macroalgae that exert a range of biological activities in vitro and in vivo. To generate an unbiased assessment of pathways and processes affected by fucoidan, a placebo-controlled double-blind pilot study was performed in healthy volunteers. Blood samples were taken immediately before and 24 h after ingestion of a single dose of 1 g of Undaria pinnatifida fucoidan (UPF) or placebo. Levels of isolated miRNAs were analyzed using Taqman Open Array Human MicroRNA panels. Out of 754 miRNAs screened, UPF affected a total of 53 miRNAs. Pathway analysis using the TALOS data analysis tool predicted 29 different pathways and processes that were largely grouped into cell surface receptor signaling, cancer-related pathways, the majority of which were previously associated with fucoidans. https://www.selleckchem.com/products/2-Methoxyestradiol(2ME2).html However, this analysis also identified nine pathways and processes that have not been associated with fucoidans before. Overall, this study illustrates that even a single dose of fucoidans has the potential to affect the expression of genes related to fundamental cellular processes. Moreover, it confirms previous data that fucoidans influence immunity, cancer cells, inflammation, and neurological function.In clinical practice, combined heart and liver dysfunctions coexist in the setting of the main heart and liver diseases because of complex cardiohepatic interactions. It is becoming increasingly crucial to identify these interactions between heart and liver in order to ensure an effective management of patients with heart or liver disease to provide an improvement in overall prognosis and therapy. In this review, we aim to summarize the cross-talk between heart and liver in the setting of the main pathologic conditions affecting these organs. Accordingly, we present the clinical manifestation, biochemical profiles, and histological findings of cardiogenic ischemic hepatitis and congestive hepatopathy due to acute and chronic heart failure, respectively. In addition, we discuss the main features of cardiac dysfunction in the setting of liver cirrhosis, nonalcoholic fatty liver disease, and those following liver transplantation.Hepatocellular carcinoma (HCC) is the leading cause of cancer-related deaths worldwide and the majority of HCC patients occur with a background of hepatic fibrosis and cirrhosis. We have previously reported the hepatoprotective effects of steamed and freeze-dried mature silkworm larval powder (SMSP) in a chronic ethanol-treated rat model. Here, we assessed the anti-fibrotic and anti-carcinogenic effects of SMSP on diethylnitrosamine (DEN)-treated rats. Wistar rats were intraperitoneally injected with DEN once a week for 12 or 16 weeks with or without SMSP administration (0.1 and 1 g/kg). SMSP administration significantly attenuated tumor foci formation and proliferation in the livers of the rats treated with DEN for 16 weeks. SMSP administration also inhibited hepatic fibrosis by decreasing the levels of collagen fiber and the expression of pro-collagen I and alpha-smooth muscle actin (α-SMA). Moreover, SMSP supplementation improved the major parameters of fibrosis such as transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), tumor necrosis factor-alpha (TNF-α), plasminogen activator inhibitor-1 (PAI-1), and collagen type I (Col1A1) in the livers from the rats treated with DEN for 16 weeks.