The superior sensing performance, including quick response and recovery of the Bi2O3-GO NC sensor is attributed to favorable charge transfer across the Bi2O3 and GO interface. The significance of relative humidity on sensing potential of the Bi2O3-GO NC sensor has also been studied and the sensor is confirmed to be unaffected by relative humidity.There is growing interest in formulating Pickering emulsions from biopolymer particles due to consumer demand for more natural products. Protein-based colloidal particles can be used for this purpose, but they are prone to aggregate at pH values around their isoelectric point (pI), which limits their application. In this study, the possibility of using chitin nanofibers (ChNFs) to improve the pH stability of Pickering emulsions prepared from zein colloidal particles (ZCPs) was investigated. Initially, the morphology and interfacial properties of the complexes formed between ChNFs and ZCPs were studied as a function of pH (3-9). The tendency of the ZCPs to aggregate and sediment at pH ≥ pI was reduced in the presence of ChNFs, which was attributed to the formation of electrostatic complexes. The contact angle of the composite particles could be optimized by altering their composition. For instance, the contact angle increased from 74° for ZCPs to 85° for ZCP/ChNF (51 ratio) at pH 6, which improved their tendency to stabilize the oil droplets. Brewster angle microscopy indicated that ZCP/ChNF complexes had rod-like and/or particulate structures at an air-water interface, which were different from those observed in the bulk aqueous phase. Pickering emulsions formed from ZCP/ChNF complexes had better stability than those formed from ZCPs or ChNFs, especially when the pH was close to or greater than the pI. An in vitro digestion study showed that the presence of the interfacial complexes reduced the lipolysis of the oil droplets by about 11% in a simulated gastrointestinal tract. High internal phase Pickering emulsions (HIPPEs) could be formed from ZCP/ChNF complexes at pH ≥ pI, which were able to protect unsaturated lipids from oxidation. Overall, our results show that chitin nanofibers can be used to improve the pH stability of Pickering emulsions formed from colloidal zein, as well as to modulate their functional performance. Highly hydrophilic nanoparticles are generally considered not suitable for stabilizing Pickering emulsions, since they could not be effectively wetted by the oil phase at the water-oil interface. However, highly hydrophilic nanoparticles with good dispersity are possibly absorbed and packed onto the surface of the oil droplets in water via the van der Waals attraction between the nanoparticles and the oil droplets. Hence, a novel "van der Waals emulsion" should be possible to be stabilized by highly hydrophilic nanoparticles. Oil-in-water emulsions solely stabilized by pristine TiO nanoparticles (i.e., TiO without any modification or additives) were prepared. The emulsification behavior under varying pH value, oil fraction, particle content and temperature of the emulsion were explored. Composite wax-based beads which encapsulated chemical sunscreen and was coated by TiO nanoparticles, was also fabricated using the obtained emulsion as the templates. The emulsions displayed the highest stability near the isoelectric points of the TiO nanoparticles, which was attributed to the van der Waals attraction between TiO nanoparticles and oil droplets. Such mechanism was supported by a theoretical analysis based on calculation of the Hamaker constants and experimental evidences. Therefore, this work presents a simple, general and green method for preparing particle-stabilized emulsions. The emulsions displayed the highest stability near the isoelectric points of the TiO2 nanoparticles, which was attributed to the van der Waals attraction between TiO2 nanoparticles and oil droplets. Such mechanism was supported by a theoretical analysis based on calculation of the Hamaker constants and experimental evidences. Therefore, this work presents a simple, general and green method for preparing particle-stabilized emulsions.Understanding the mechanisms of protein interactions with solid surfaces is critical to predict how proteins affect the performance of materials in biological environments. Low-fouling and ultra-low fouling surfaces are often evaluated in short-term protein adsorption experiments, where 'short-term' is defined as the time required to reach an initial apparent or pseudo-equilibrium, which is usually less than 600 s. However, it has long been recognized that these short-term observations fail to predict protein adsorption behavior in the long-term, characterized by irreversible accumulation of protein on the surface. This important long-term behavior is frequently ignored or attributed to slow changes in surface chemistry over time-such as oxidation-often with little or no experimental evidence. Here, we report experiments measuring protein adsorption on "low-fouling" and "ultralow-fouling" surfaces using single-molecule localization microscopy to directly probe protein adsorption and desorption. The experiments detect protein adsorption for thousands of seconds, enabling direct observation of both short-term (reversible adsorption) and long-term (irreversible adsorption leading to accumulation) protein-surface interactions. By bridging the gap between these two time scales in a single experiment, this work enables us to develop a single mathematical model that predicts behavior in both temporal regimes. https://www.selleckchem.com/products/amenamevir.html The experimental data in combination with the resulting model provide several important insights (1) short-term measurements of protein adsorption using ensemble-averaging methods may not be sufficient for designing antifouling materials; (2) all investigated surfaces eventually foul when in long-term contact with protein solutions; (3) fouling can occur through surface-induced oligomerization of proteins which may be a distinct step from irreversible adsorption; and (4) surfaces can be designed to reduce oligomerization or the adsorption of oligomers, to prevent or delay fouling.