https://www.selleckchem.com/btk.html Ruthenium compounds are promising anticancer candidates owing to their lower side-effects and encouraging activities against resistant tumors. Half-sandwich piano-stool type RuII compounds of general formula [(L)RuII(η6-arene)(X)]+ (L = chelating bidentate ligand, X = halide) have exhibited significant therapeutic potential against cisplatin-resistant tumor cell lines. In RuII (p-cymene) based complexes, the change of the halide leaving group has led to several interesting features, viz., hydrolytic stability, resistance toward thiols, and alteration in pathways of action. Tyramine is a naturally occurring monoamine which acts as a catecholamine precursor in humans. We synthesized a family of N,N and N,O coordinated RuII (p-cymene) complexes, [(L)RuII(η6-arene)(X)]+ (1-4), with tyramine and varied the halide (X = Cl, I) to investigate the difference in reactivity. Our studies showed that complex 2 bearing N,N coordination with an iodido leaving group shows selective in vitro cytotoxicity against the pancreatic cancer cell line MIA PaCa-2 (IC50 ca. 5 μM) but is less toxic to triple-negative breast cancer (MDA-MB-231), hepatocellular carcinoma (Hep G2), and the normal human foreskin fibroblasts (HFF-1). Complex 2 displays stability toward hydrolysis and does not bind with glutathione, as confirmed by 1H NMR and ESI-HRMS experiments. The inert nature of 2 leads to enhancement of cytotoxicity (IC50 = 5.3 ± 1 μM) upon increasing the cellular treatment time from 48 to 72 h.When an aqueous salt solution freezes, a freeze-concentrated solution (FCS) separates from the ice. The properties of the FCS may differ from those of a supercooled bulk solution of the same ionic strength at the same temperature. The fluorescence and lifetime characteristics of 6-cyano-2-naphthol (6CN) were studied in frozen NaCl solutions in order to provide insight into the solution properties of the FCS. While the photoacidity of 6CN in an FCS is similar to that