Silicate slags are one of the most widely used silicon (Si) source in agriculture. Even though the agronomic significance of slags has been demonstrated in several crops, only a few attempts were made to evaluate these Si sources based on their chemical composition. The main objective of this study was to characterize different silicate slags based on their chemical properties and to explore the effect of these chemical properties on the yield, and Si uptake in wetland rice, and dissolution of Si into the soil. Slags were characterised for pH, calcium and magnesium content (alkalinity, A), silicon content, 5 day Na2CO3 + NH4NO3 extractable Si content, and alkalinity to Si ratio (A/Si). https://www.selleckchem.com/screening/natural-product-library.html Greenhouse and incubation experiments were also conducted using different silicate slags and wollastonite applied at the rate of 300 kg Si ha-1. Slags with A/Si  less then  3 were found to be ideal Si sources for the economic production of wetland rice and found consistent in increasing soil Si content and rice Si uptake. We conclude that the A/Si ratio of slags can be used as an important parameter to assess the agronomic efficiency of silicate slags in wetland rice.The separation of biomarkers from blood is straightforward in most molecular biology laboratories. However, separation in resource-limited settings, allowing for the successful removal of biomarkers for diagnostic applications, is not always possible. The situation is further complicated by the need to separate hydrophobic signatures such as lipids from blood. Herein, we present a microfluidic device capable of centrifugal separation of serum from blood at the point of need with a system that is compatible with biomarkers that are both hydrophilic and hydrophobic. The cross-flow filtration device separates serum from blood as efficiently as traditional methods and retains amphiphilic biomarkers in serum for detection.Regulation of haematopoietic stem cell fate through conditional gene expression could improve understanding of healthy haematopoietic and leukaemia initiating cell (LIC) biology. We established conditionally immortalised myeloid progenitor cell lines co-expressing constitutive Hoxa9.EGFP and inducible Meis1.dTomato (H9M-ciMP) to study growth behaviour, immunophenotype and morphology under different cytokine/microenvironmental conditions ex vivo upon doxycycline (DOX) induction or removal. The vector design and drug-dependent selection approach identified new retroviral insertion (RVI) sites that potentially collaborate with Meis1/Hoxa9 and define H9M-ciMP fate. For most cell lines, myelomonocytic conditions supported reversible H9M-ciMP differentiation into neutrophils and macrophages with DOX-dependent modulation of Hoxa9/Meis1 and CD11b/Gr-1 expression. Here, up-regulation of Meis1/Hoxa9 promoted reconstitution of exponential expansion of immature H9M-ciMPs after DOX reapplication. Stem cell maintaining conditions supported selective H9M-ciMP exponential growth. H9M-ciMPs that had Ninj2 RVI and were cultured under myelomonocytic or stem cell maintaining conditions revealed the development of DOX-dependent acute myeloid leukaemia in a murine transplantation model. Transcriptional dysregulation of Ninj2 and distal genes surrounding RVI (Rad52, Kdm5a) was detected. All studied H9M-ciMPs demonstrated adaptation to T-lymphoid microenvironmental conditions while maintaining immature myelomonocytic features. Thus, the established system is relevant to leukaemia and stem cell biology.Aspergillus fumigatus is an important fungal pathogen that represents a major threat for severely immunocompromised patients. Cases of invasive aspergillosis are associated with a high mortality rate, which reflects the limited treatment options that are currently available. The development of novel therapeutic approaches is therefore an urgent task. An interesting compound is fludioxonil, a derivative of the bacterial secondary metabolite pyrrolnitrin. Both agents possess potent antimicrobial activity against A. fumigatus and trigger a lethal activation of the group III hybrid histidine kinase TcsC, the major sensor kinase of the High Osmolarity Glycerol (HOG) pathway in A. fumigatus. In the current study, we have characterized proteins that operate downstream of TcsC and analyzed their roles in the antifungal activity of fludioxonil and in other stress situations. We found that the SskA-SakA axis of the HOG pathway and Skn7 can independently induce an increase of the internal glycerol concentration, but eacA high internal osmotic pressure and a weakened cell wall. The involvement of Skn7 in both processes most likely accounts for its particular importance in the antifungal activity of fludioxonil.In this paper, groundwater treatment sludge (GTS) was recycled as a magnetic adsorbent via a facile calcination process without adding any reductant. The prepared magnetic adsorbents (MAs) were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and X-ray photoelectron spectroscopy (XPS), vibrating sample magnenometer (VSM) and Mössbauer spectroscopy. The results showed that GTS comprised 33.2% Fe, 1.4% Al and 6.2% Si, and exhibited a weak saturation magnetization of 0.0008 emu/g. Without NaOH, the GTS calcinated at 700 and 500 °C were well magnetized with Ms of 20.1 and 7.1 emu/g, separately, but exhibited a low Ms of 0.43 emu/g at 300 °C. By adding NaOH powder, the Ms of GTS apparently increased to 4.9 emu/g after calcination at 300 °C, and further to 8.5 emu/g at 500 °C. In GTS, about 96.1% Fe was involved in ferrihydrite form. The Ms of calcinated GTS was accompanied with the phase transformation of ferrihydrite to maghemite. Si/Al oxides in GTS coordinated on the surface sites of ferrihydrite and inhibited the conjunction and phase transformation of adjacent ferrihydrite particles, but were effectively desorbed as in the presence of NaOH. Na500, preparing by calcinating GTS at 500 °C with NaOH, showed an optimal total surface sites (Hs) of 0.65 mmol/g. Oxytetracycline (OTC) was used as a target for studying the adsorption characteristics of synthetic magnetic adsorbents and a high adsorption capacity of oxytetracycline of 862.1 mg/g in comparison with the other calcinated GTS, and the adsorption data was consistent with the Langmuir model. By adding 6 g/L Na-500, approximately 100% of oxytetracycline and tetracycline and nearly 40% total organic carbon were removed from real pharmaceutical wastewater. With the method, GTS can be converted in mass production to magnetic adsorbent that exhibits effective application in pharmaceutical wastewater treatment.