https://www.selleckchem.com/products/otx015.html Graphene oxide (GO) was treated with irradiation beams to understand the defective degree of carbon structure of GO in relation to electron transfer property of impregnated zerovalent iron (ZVI). The GO-supported ZVI (ZVI/GO) was synthesized and then characterized by an X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The results showed that the oxygen-bearing functional groups, oxygen content and structural disorder were increased as a function of irradiation beam intensity. ZVI was dominant in the composites, but proportion of iron oxide increased with greater oxygen content. Batch sorption revealed that Cr(VI) removal decreased from 20.11 g kg-1 to 2.30 g kg-1 as solution pH rose from 3 to 9. Cr(VI) removal capacity was 26.39 g kg-1, 23.12 g kg-1 and 12.35 g kg-1 for ZVI/GO0, ZVI/GO12.3 and ZVI/GO36.9, respectively. The reduction capacity of sorbents followed similar trends as Cr(VI) sorption as per desorption experiment, which accounted for a major Cr(VI) detoxification mechanism by ZVI/GO composites. The electrochemical tests demonstrated that unfavorable electron transfer rate of ZVI/GO composites was aggravated by greater structural disorder of GO. Thus, higher dose of irradiations could create more disorder in graphitic carbon and promote oxidation of ZVI, which hindered Cr(VI) reduction.Membrane fouling by dissolved organic matter (DOM), especially microbially-derived DOM, is a major challenge for ultrafiltration (UF) membranes in water purification. Fouling may be mitigated by pretreating feed waters; however, there are no comprehensive studies that compare the fouling reduction efficacies across different pretreatment processes. Further, there is a limited understanding of the relationship between fouling reduction efficacy and microbially-derived DOM removal from source waters. Accordingly, the objectives of this study w