Conclusions Our data suggest that the IgG4 subtype in TED is common. IgG4-positive patients with TED may be older, have more severe disease, and have higher clinical activity scores. IgG4 may play an important role in the pathogenesis of TED.Purpose To investigate the spatial characteristics and patterns of structural progression using the combined retinal nerve fiber layer (RNFL) and ganglion cell-inner plexiform layer event-based progression analysis feature provided by the Guided Progression Analysis (GPA) software of spectral-domain optical coherence tomography. Methods In this retrospective observational study, we evaluated 89 patients with open-angle glaucoma showing clinically confirmed structural progression within a minimum follow-up period of 3 years. For each eye, the RNFL and ganglion cell-inner plexiform layer GPA data were extracted from serial spectral-domain optical coherence tomography (HD-OCT 4000, Carl Zeiss Meditec, Inc., Dublin, CA) data from 2012 to 2017 (available in commercial report). A combined wide-field GPA map was merged using vascular landmark-guided superimposition of RNFL and ganglion cell-inner plexiform layer GPA event-based progression maps onto the RNFL image (resulting in the GPA PanoMaps proposed in this studThe patterns of progressive glaucomatous structural changes in both the peripapillary and macular areas were confirmed on the combined wide-field GPA map (GPA PanoMap). An analysis of the progression pattern using the GPA PanoMap facilitates the understanding of the spatial relation between the peripapillary and macular areas in glaucoma.Purpose To evaluate the depth and pattern of retinal hemorrhage in acute central retinal vein occlusion (CRVO) and to correlate these with visual and anatomic outcomes. Methods Retinal hemorrhages were evaluated with color fundus photography and fluorescein angiography at baseline and follow-up. Snellen visual acuity (VA), central foveal thickness (CFT), extent of retinal ischemia, and development of neovascularization were analyzed. Results 108 eyes from 108 patients were evaluated. Mean age was 63.6 ± 16.1 years with a predilection for the right eye (73.1%). Average follow-up was 17.2 ± 19.2 months. Mean VA at baseline was 20/126 and 20/80 at final follow-up. Baseline (P = 0.005) and final VA (P = 0.02) in eyes with perivascular nerve fiber layer (NFL) hemorrhages were significantly worse than in eyes with deep hemorrhages alone. Baseline CFT was greater in the group with perivascular hemorrhages (826 ± 394 µm) compared to the group with deep hemorrhages alone (455 ± 273 µm, P less then 0.001). The 10 disc areas of retinal ischemia was more common in patients with perivascular (80.0%) and peripapillary (31.3%) versus deep hemorrhages alone (16.1%, P less then 0.001). Neovascularization of the iris was more common, although this differrence was not significant, in the groups with peripapillary (14.3%) and perivascular (2.0%) NFL versus deep hemorrhages alone (0.0%). Conclusions NFL retinal hemorrhages at baseline correlate with more severe forms of CRVO, with greater macular edema, poorer visual outcomes, and greater risk of ischemia and neovascularization. This may be related to the organization of the retinal capillary plexus. The depth and pattern of distribution of retinal hemorrhages in CRVO may provide an easily identifiable early biomarker of CRVO prognosis.Purpose To compare changes in relative peripheral refraction (RPR) associated with myopia progression in myopic children wearing Defocus Incorporated Multiple Segments (DIMS) lenses and single vision (SV) spectacle lenses over 2 years. Methods A 2-year double-blind, randomized controlled trial was conducted on 183 myopic children. Subjects were allocated to either wearing DIMS (n = 93) or SV spectacle lenses (n = 90). Peripheral refraction at 10°, 20°, and 30° of the nasal (10N, 20N, 30N) and temporal (10T, 20T, 30T) retinal eccentricities, central refraction, and axial length after cycloplegia were monitored every 6 months. Results DIMS group showed symmetrical peripheral myopic shifts between the nasal and temporal retina (comparing myopic shifts between the nasal and temporal retina, the difference between the corresponding eccentricities were nonclinically significance). SV group showed asymmetrical peripheral myopic shifts between the nasal and temporal retina, with more myopic shifts (all P ≤ 0.001) at 10T (-0.32 ± 0.62 diopters [D]), at 20T (-0.69 ± 0.95 D), and 30T (-0.85 ± 1.52 D). No significant changes in RPR spherical equivalent (M) were noted in the DIMS group, whereas significant increases (all P less then 0.0001) in hyperopic RPR M were observed at 10N (0.27 ± 0.45 D), 20N (0.75 ± 0.72 D), and 30N (0.98 ± 0.76 D) in the SV group. Conclusions Wearing DIMS lenses resulted in a significantly different peripheral refraction profile and RPR changes, as well as significant myopia control effects when compared with SV lenses. Myopia control adopting myopic defocus in the midperiphery influenced peripheral refraction and slowed central myopia progression, most likely through alteration of overall retinal shape.Purpose Retinal detachment (RD) disrupts the nutritional support and oxygen delivery to photoreceptors (PRs), ultimately causing cell death. High-mobility group box 1 (HMGB1) can serve as an extracellular alarmin when released from stressed cells. PRs release HMGB1 after RD. The purpose of this study was to investigate the relationship between HMGB1 and PR survival after RD. Methods Acute RD was created by injection of hyaluronic acid (1%) into the subretinal space in C57BL/6 mice and mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1ΔRod). https://www.selleckchem.com/products/glutathione.html Immunofluorescence (IF) in retinal sections was used to localize HMGB1, rhodopsin, and Iba-1 proteins. Optical coherence tomography and electroretinography were used to quantify retinal thickness and function, respectively. The morphology of the retina was assessed by hematoxylin and eosin. Results HMGB1 protein was localized to the nuclei of all retinal neurons, including PRs, with cones staining more intensely than rods. HMGB1 protein was also found in the inner and outer segments of cones but not rods.