g., discretized X waves). Future experiments in multimode fibers could reveal different forms of dispersion-engineered conical emission and supercontinuum light bullets.We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, requires little knowledge of the dynamics itself, and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally nondemanding approach to the control of nonequilibrium quantum thermodynamics. We successfully apply our methods to the case of single- and two-particle systems subjected to time-dependent driving potentials.Targeting at the realization of scalable photonic quantum technologies, the generation of many photons, their propagation in large optical networks, and a subsequent detection and analysis of sophisticated quantum correlations are essential for the understanding of macroscopic quantum systems. In this experimental contribution, we explore the joint operation of all mentioned ingredients. We benchmark our time-multiplexing framework that includes a high-performance source of multiphoton states and a large multiplexing network, together with unique detectors with high photon-number resolution, readily available for distributing quantum light and measuring complex quantum correlations. Using an adaptive approach that employs flexible time bins, rather than static ones, we successfully verify high-order nonclassical correlations of many photons distributed over many modes. By exploiting the symmetry of our system and using powerful analysis tools, we can analyze correlations that would be inaccessible by classical means otherwise. In particular, we produce on the order of ten photons and distribute them over 64 modes. Nonclassicality is verified with correlation functions up to the 128th order and statistical significances of up to 20 standard deviations.We search for a Gardner transition in glassy glycerol, a standard molecular glass, measuring the third harmonics cubic susceptibility χ_3^(3) from slightly below the usual glass transition temperature down to 10 K. According to the mean-field picture, if local motion within the glass were becoming highly correlated due to the emergence of a Gardner phase then χ_3^(3), which is analogous to the dynamical spin-glass susceptibility, should increase and diverge at the Gardner transition temperature T_G. We find instead that upon cooling |χ_3^(3)| decreases by several orders of magnitude and becomes roughly constant in the regime 100-10  K. We rationalize our findings by assuming that the low temperature physics is described by localized excitations weakly interacting via a spin-glass dipolar pairwise interaction in a random magnetic field. Our quantitative estimations show that the spin-glass interaction is twenty to fifty times smaller than the local random field contribution, thus rationalizing the absence of the spin-glass Gardner phase. This hints at the fact that a Gardner phase may be suppressed in standard molecular glasses, but it also suggests ways to favor its existence in other amorphous solids and by changing the preparation protocol.The configurational entropy of high entropy alloys (HEAs) plays little role in the stabilization of one particular crystal structure over another. We show that disorder-induced atomic displacements help stabilize body centered cubic (bcc) structure HEAs with average valences less then 4.7. These disorder-induced atomic displacements mimic the temperature-induced vibrations that stabilize the bcc structure of group IV elemental metals at high temperatures. The static displacements are significantly larger than for face centered cubic HEAs, approaching values associated with the Lindemann criterion for melting. Chemical disorder in high entropy alloys have a previously unidentified, nonentropic energy contribution that stabilizes a particular crystalline ground state.A significant number of stellar-mass black-hole (BH) binaries may merge in galactic nuclei or in the surrounding gas disks. With purposed space-borne gravitational-wave observatories, we may use such a binary as a signal carrier to probe modulations induced by a central supermassive BH (SMBH), which further allows us to place constraints on the SMBH's properties. We show in particular the de Sitter precession of the inner stellar-mass binary's orbital angular momentum (AM) around the AM of the outer orbit will be detectable if the precession period is comparable to the duration of observation, typically a few years. https://www.selleckchem.com/products/gsk-2837808A.html Once detected, the precession can be combined with the Doppler shift arising from the outer orbital motion to determine the mass of the SMBH and the outer orbital separation individually and each with percent-level accuracy. If we further assume a joint detection by space-borne and ground-based detectors, the detectability threshold could be extended to a precession period of ∼100  yr.We study the dissipative preparation of many-body entangled Gaussian states in bosonic lattice models which could be relevant for quantum technology applications. We assume minimal resources, represented by systems described by particle-conserving quadratic Hamiltonians, with a single localized squeezed reservoir. We show that in this way it is possible to prepare, in the steady state, the wide class of pure states which can be generated by applying a generic passive Gaussian transformation on a set of equally squeezed modes. This includes nontrivial multipartite entangled states such as cluster states suitable for measurement-based quantum computation.Chirality causes symmetry breaks in a large variety of natural phenomena ranging from particle physics to biochemistry. We investigate one of the simplest conceivable chiral systems, a laser-excited, oriented, effective one-electron Li target. Prepared in a polarized p state with |m|=1 in an optical trap, the atoms are exposed to co- and counterrotating circularly polarized femtosecond laser pulses. For a field frequency near the excitation energy of the oriented initial state, a strong circular dichroism is observed and the photoelectron energies are significantly affected by the helicity-dependent Autler-Townes splitting. Besides its fundamental relevance, this system is suited to create spin-polarized electron pulses with a reversible switch on a femtosecond timescale at an energy resolution of a few meV.