https://www.selleckchem.com/products/17-DMAG,Hydrochloride-Salt.html In this study, high-entropy alloy films, namely, AlCrTaTiZr/AlCrTaTiZr-N, were deposited on the n-type (100) silicon substrate. Then, a copper film was deposited on the high-entropy alloy films. The diffusion barrier performance of AlCrTaTiZr/AlCrTaTiZr-N for Cu/Si connect system was investigated after thermal annealing for an hour at 600 °C, 700 °C, 800 °C, and 900 °C. There were no Cu-Si intermetallic compounds generated in the Cu/AlCrTaTiZr/AlCrTaTiZr-N/Si film stacks after annealing even at 900 °C through transmission electron microscopy (TEM) and atomic probe tomography (APT) analysis. The results indicated that AlCrTaTiZr/AlCrTaTiZr-N alloy films can prevent copper diffusion at 900 °C. The reason was investigated in this work. The amorphous structure of the AlCrTaTiZr layer has lower driving force to form intermetallic compounds; the lattice mismatch between the AlCrTaTiZr and AlCrTaTiZ-rN layers increased the diffusion distance of the Cu atoms and the difficulty of the Cu atom diffusion to the Si substrate.Despite our intimate relationship with music in every-day life, we know little about how people create music. A particularly elusive area of study entails the spontaneous collaborative musical creation in the absence of rehearsals or scripts. Toward this aim, we designed an experiment in which pairs of players collaboratively created music in rhythmic improvisation. Rhythmic patterns and collaborative processes were investigated through symbolic-recurrence quantification and information theory, applied to the time series of the sound created by the players. Working with real data on collaborative rhythmic improvisation, we identified features of improvised music and elucidated underlying processes of collaboration. Players preferred certain patterns over others, and their musical experience drove musical collaboration when rhythmic improvisation started. These results unfold prevailing rhy