The percentage of false scar, collected during contact force blinded mapping compared to total volume, was 6.0±5.2% for bipolar scar and 7.1±5.9% for unipolar scar, respectively. No EAM scar was present after poor contact points removal. Right ventricular areas analysis revealed a greater number of points with contact force < 5g acquired in free wall, where reduced mean bipolar and unipolar voltage were recorded. To date this is the first work conducted on structurally normal hearts in which contact-force significantly increases EAM accuracy, avoiding "false scar" related to non-adequate contact between catheter and tissue. To date this is the first work conducted on structurally normal hearts in which contact-force significantly increases EAM accuracy, avoiding "false scar" related to non-adequate contact between catheter and tissue.This article is dedicated to the memory of Masao Ito. Masao Ito made numerous important contributions revealing the function of the cerebellum in motor control. His pioneering contributions to cerebellar physiology began with his discovery of inhibition and disinhibition of target neurons by cerebellar Purkinje cells, and his discovery of the presence of long-term depression in parallel fiber-Purkinje cell synapses. Purkinje cells formed the nodal point of Masao Ito's landmark model of motor control by the cerebellum. These discoveries became the basis for his ideas regarding the flocculus hypothesis, the adaptive motor control system, and motor learning by the cerebellum, inspiring many new experiments to test his hypotheses. This article will trace the achievements of Ito and colleagues in analyzing the neural circuits of the input-output organization of the cerebellar cortex and nuclei, particularly with respect to motor control. The article will discuss some of the important issues that have been solved and also those that remain to be solved for our understanding of motor control by the cerebellum.The role of stress in altering fear memory is not well understood. Since individual variations in stress reactivity exist, and stress alters fear memory, exposing individuals with differing stress-reactivity to repeated stress would affect their fear memory to various degrees. We explored this question using the average stress-reactive Fisher 344 (F344) rat strain and the Wistar-Kyoto (WKY) strain with its heightened stress-reactivity. Male F344 and WKY rats were exposed to the contextual fear conditioning (CFC) paradigm and then chronic restraint stress (CRS) or no stress (NS) was administered for two weeks before a second CFC. Both recent and reinstated fear memory were greater in F344s than WKYs, regardless of the stress status. In contrast, remote memory was attenuated only in F344s after CRS. In determining whether this strain-specific response to CRS was mirrored by transcriptomic changes in the blood, RNA sequencing was carried out. Overlapping differentially expressed genes (DEGs) between NS and CRS in the blood of F344 and WKY suggest a convergence of stress-related molecular mechanisms, independent of stress-reactivity. In contrast, DEGs unique to the F344 and the WKY stress responses are divergent in their functionality and networks, beyond that of strain differences in their non-stressed state. These results suggest that in some individuals chronic or repeated stress, different from the original fear memory-provoking stress, can attenuate prior fear memory. Furthermore, the novel blood DEGs can report on the general state of stress of the individual, or can be associated with individual variation in stress-responsiveness.The tryptophan metabolite kynurenic acid (KYNA) may play an important role in normal and abnormal cognitive processes, most likely by interfering with α7 nicotinic and NMDA receptor function. KYNA is formed from its immediate precursor kynurenine either by non-enzymatic oxidation or through irreversible transamination by kynurenine aminotransferases. In the mammalian brain, kynurenine aminotransferase II (KAT II) is the principal enzyme responsible for the neosynthesis of rapidly mobilizable KYNA, and therefore constitutes an attractive target for pro-cognitive interventions. N-acetylcysteine (NAC), a brain-penetrant drug with pro-cognitive efficacy in humans, has been proposed to exert its actions by increasing the levels of the anti-oxidant glutathione (GSH) in the brain. We report here that NAC, but not GSH, inhibits KAT II activity in brain tissue homogenates from rats and humans with IC50 values in the high micromolar to low millimolar range. With similar potency, the drug interfered with the de novo formation of KYNA in rat brain slices, and NAC was a competitive inhibitor of recombinant human KAT II (Ki 450 μM). Furthermore, GSH failed to S-glutathionylate recombinant human KAT II treated with the dithiocarbamate drug disulfiram. Shown by microdialysis in the prefrontal cortex of rats treated with kynurenine (50 mg/kg, i.p.), peripheral administration of NAC (500 mg/kg, i.p., 120 and 60 min before the application of kynurenine) reduced KYNA neosynthesis by ∼50%. https://www.selleckchem.com/products/eapb02303.html Together, these results suggest that NAC exerts its neurobiological effects at least in part by reducing cerebral KYNA formation via KAT II inhibition.Neuroscientific research on pleasant touch has focused on the C-tactile pathway for gentle stroking and has successfully explained how these sensory fibers transmit information about affective social touch to the brain and induce sensations of pleasantness. The C-tactile social/affective touch hypothesis even proposes that C-tactile fibers form a privileged pathway underlying social touch. However, deep pressure is a type of touch commonly considered pleasant and calming, occurring in hugs, cuddling, and massage. In this paper we introduce a paradigm for studying pleasant deep pressure and propose that it constitutes another important form of social touch. We describe development of the oscillating compression sleeve (OCS) as one approach to administering deep pressure and demonstrate that this touch is perceived as pleasant and calming. Further, we show that deep pressure can be imaged with functional magnetic resonance imaging (MRI) using the air-pressure-driven OCS and that deep pressure activates brain regions highly similar to those that respond to C-tactile stroking, as well as regions not activated by stroking.