Chilling stress during the growing season could cause a series of changes in wucai (Brassica campestris L.). https://www.selleckchem.com/products/tpen.html WS-1 (chilling-tolerant genotype) and Ta2 (chilling-sensitive genotype) were sampled in present study to explore the chilling tolerance mechanisms. Our results indicated that photosynthetic parameters exhibited lower level in Ta2 than in WS-1 under chilling stress. The rapid chlorophyll fluorescence dynamics curve showed that chilling resulted in a greater inactivation of photosystem II reaction center in Ta2. Reactive oxygen species and malondialdehyde content of chloroplast in Ta2 were higher than WS-1. The ascorbate-glutathione cycle in chloroplast of WS-1 played a more crucial role than Ta2, which was confirmed by higher activities of antioxidant enzymes including Ascorbate peroxidase, Glutathione reductase, Monodehydroascorbate reductase and Dehydroascorbate reductase and higher content of AsA and GSH. In addition, the ultrastructure of chloroplasts in Ta2 was more severely damaged. After low temperature stress, the shape of starch granules in Ta2 changed from elliptical to round and the volume became larger than that of WS-1. The thylakoid structure of Ta2 also became dispersed from the original tight arrangement. Combined with our previous study under heat stress, WS-1 can tolerant both chilling stress and heat stress, which was partly due to a stable photosynthetic system and the higher active antioxidant system in plants, in comparison to Ta2. © Prof. H.S. Srivastava Foundation for Science and Society 2020.The future CO2 concentration is projected to reach 900-1000 ppm levels by the end of twenty-first century, pertaining to global climatic changes. Consequences of climate change such as changes in mean climatic conditions, increasing extreme weather events, relentless increase in atmospheric CO2 concentration and increasing pest damage pose serious threats to agricultural productivity. An experiment was planned to assess the response of yam bean to elevated CO2, as it is of paramount importance to identify photosynthetically efficient climate-smart crops and varieties to meet future food demand. The net photosynthetic rate (P n ), stomatal conductance (g s ) and intercellular CO2 (C i ) of yam bean variety, Rajendra Misrikand-1 was recorded under elevated carbon dioxide (400-1000 ppm) and photon flux density (PPFD; 50-2000 μmol m-2 h-1) at 30 ± 2 °C, 70-80% relative humidity and 0.8-1.2 kPa vapour pressure deficit. The mean P n rate steadily increased at 200-1000 ppm owing to enhanced intercellular CO2. The same trend was observed in the case of intercellular CO2. However, contrasting results were recorded with regard to g s , which steadily decreased at ascending carbon dioxide concentrations. Further, P n had a significant (P  less then  0.001) linear correlation with the PPFD (R2 = 0.973). Yam bean was found to be responsive to elevated carbon dioxide as P n rate at 1000 ppm increased up to 23% relative to 400 ppm. © Prof. H.S. Srivastava Foundation for Science and Society 2019.The qRT-PCR method has been widely used to detect gene expression level in plants, helping to understand the molecular mechanisms. However, there are few researches which focus on the selection of the internal reference genes in Forsythia. To select the appropriate reference genes of Forsythia aimed at qRT-PCR normalization, twelve candidate reference genes were selected from our transcriptome data. Their expression was assessed by RT-PCR analysis in 47 Forsythia samples, including 12 species cultivars, different organs and tissues. GeNorm, NormFinder, and BestKeeper software were used to select the appropriate reference genes, AG and PSY were used to verify the accuracy of the outcome. The results showed that UKN1 was a stable reference gene in leaves of twelve Forsythia germplasms and in different developmental stages of fruits. MTP, ABCT + MTP, and ABCT + MTP + TIP were stable reference genes in different organs. ACT and SDH were stable reference genes in different flower tissues and different developmental stages of the flower buds. When Forsythia plants were stressed with PEG or ABA, SDH + UKN1 + G6PD was the stable reference gene group for qRT-PCR. The results provided the basis for investigating the physiological and biochemical processes of Forsythia related to medicinal and ornamental properties, and drought-resistance in the level of gene expression. © Prof. H.S. Srivastava Foundation for Science and Society 2019.Salinization of soil is a prime abiotic stress that limits agriculture productivity worldwide. To Study the mechanisms that halophytes take up to survive under high salt condition is important in engineering salinity stress tolerance in sensitive species. Suaeda nudiflora is a halophyte plant that grows in the saline environment and extreme high tidal belt. The species have high capability to produce high protein biomass in salty soils due to C4 photosynthesis. The physiological and biochemical changes in S. nudiflora under salinity stress were studied by measuring chlorophyll content, electrolytic leakage, level of lipid peroxidation and total soluble sugars. Increased lipid peroxidation and electrolytic leakage was observed in salt stressed S. nudiflora compared to control plants. A suppression subtractive hybridization strategy was employed to identify differentially expressed genes under salt treatment in S. nudiflora. A total of 333 positive clones were identified and screened. Of these, 250 expressed sequence tags were identified. cDNA subtraction library resulted in 33 contigs and 138 singletons. The functional annotation and metabolic pathways identification were performed using the Blast2GO program. In addition, we analyzed the expression patterns of 18 genes associated with salt stress-responsive pathways by semi-quantitative PCR under salt and elevated carbon dioxide (CO2) conditions. Several of the analyzed genes showed an increase in expression levels under different time points of salt treatment and at different concentrations of salt. When the same genes were studied for its expression under elevated CO2 concentrations, most of the known salt responsive genes showed higher expression under the combined treatment of elevated CO2 concentrations (500 ppm) and NaCl treatment (200 mM) compare to ambient condition. This implies that salt responsive genes are enhanced at elevated CO2 concentrations. © Prof. H.S. Srivastava Foundation for Science and Society 2019.