https://www.selleckchem.com/products/uk5099.html Participants consuming kiwifruit showed significantly improved mood and well-being during the intervention period; improvements in well-being were sustained during washout. Decreased fatigue and increased well-being were observed following intake of vitamin C alone, but only for participants with consistently low vitamin C levels during lead-in. Diet records showed that participants consuming kiwifruit reduced their fat intake during the intervention period. Intervention effects remained significant when adjusting for age and ethnicity, and were not explained by sleep quality, physical activity, BMI, or other dietary patterns, including fat intake. There were no changes in plasma vitamin C status or vitality in the placebo group. Whole food consumption of kiwifruit improved subjective vitality in adults with low vitamin C status. Similar, but not identical, changes were found for vitamin C tablets suggesting that additional properties of kiwifruit may contribute to improved vitality.This study investigated the potentiodynamic corrosion behavior of carbon fiber reinforced plastic (CFRP) and automotive rolled mild steel alloy (SPCC alloy) under different surface roughness conditions. Electrochemical characterization was performed using a potentiodynamic corrosion test with 5.0 wt.% NaCl aqueous solution at 25 ± 2 °C, while microstructural and compositional changes before and after corrosion were evaluated using field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS), respectively. The CFRP and SPCC corrosion rate increased as surface roughness increased. Generally, SPCC corroded faster than CFRP. The surface composition of CFRP was not affected by corrosion, regardless of the surface roughness conditions. Conversely, SPCC exhibited remarkable changes due to the formation of oxides, and its corrosion was more severe than that of CFRP as surface roughness increased. We used a double f