https://www.selleckchem.com/ RNA homeostasis is regulated by a multitude of cellular pathways. Although the addition of untemplated adenine residues to the 3' end of mRNAs has long been known to affect RNA stability, newly developed techniques for 3'-end sequencing of RNAs have revealed various unexpected RNA modifications. Among these, uridylation is most recognized for its role in mRNA decay but is also a key regulator of numerous RNA species, including miRNAs and tRNAs, with dual roles in both stability and maturation of miRNAs. Additionally, low levels of untemplated guanidine and cytidine residues have been observed as parts of more complex tailing patterns.Triple-negative breast cancers (TNBC) that produce nitric oxide (NO) are more aggressive, and the expression of the inducible form of nitric oxide synthase (NOS2) is a negative prognostic indicator. In these studies, we set out to investigate potential therapeutic strategies to counter the tumor-permissive properties of NO. We found that exposure to NO increased proliferation of TNBC cells and that treatment with the histone deacetylase inhibitor Vorinostat (SAHA) prevented this proliferation. When histone acetylation was measured in response to NO and/or SAHA, NO significantly decreased acetylation on histone 3 lysine 9 (H3K9ac) and SAHA increased H3K9ac. If NO and SAHA were sequentially administered to cells (in either order), an increase in acetylation was observed in all cases. Mechanistic studies suggest that the "deacetylase" activity of NO does not involve S-nitrosothiols or soluble guanylyl cyclase activation. The observed decrease in histone acetylation by NO required the interaction of NO with cellular iron pools and may be an overriding effect of NO-mediated increases in histone methylation at the same lysine residues. Our data revealed a novel pathway interaction of Vorinostat and provides new insight in therapeutic strategy for aggressive TNBCs.Proteolytic processing of the amyloid precursor pro