https://www.selleckchem.com/products/uc2288.html Surface proteins bound to the cell membrane by glycosylphosphatidylinositol (GPI) anchors are considered essential for the survival of pathogenic protozoans. In the case of the tick-transmitted hemoparasite Babesia bovis, the most virulent causative agent of bovine babesiosis, the GPI-anchored proteome was recently unraveled by an in silico approach. In this work, one of the identified proteins, GASA-1 (GPI-Anchored Surface Antigen-1), was thoroughly characterized. GASA-1 is 179 aa long and has the characteristic features of a GPI-anchored protein, including a signal peptide, a hydrophilic core and a hydrophobic tail that harbors a GPI anchor signal. Transcriptomic analysis shows that it is expressed in pathogenic and attenuated B. bovis strains. Notably, the gasa-1 gene has syntenic counterparts in B. bigemina and B. ovata, which also encode GPI-anchored proteins. This is highly unusual since all piroplasmid GPI-anchored proteins described so far have been found to be species-specific. Sequencing of gasa-1 adominant. The high degree of conservation among B. bovis isolates and the presence of syntenic genes in other Babesia species suggest a relevant role of GASA-1 and GASA-1-like proteins for parasite survival, especially considering that, due to their surface location, they are exposed to the selection pressure of the host immune system. The highlighted features of GASA-1 make it an interesting candidate for the development of vaccines against bovine babesiosis.Adonis coerulea Maxim. as a folk medicine, presented acaricidal acitvity. However, the mode of action and active compounds were unclear. In this study, using proteomics and surface plasmon resonance (SPR) technology the mode of action and active compounds of A. coerulea were investigated, as well as a sensitive and environmentally friendly analytical method developed. Proteomics analysis results showed that after treatment of mites with A. coerulea methanol e