https://www.selleckchem.com/products/nsc16168.html Previous research has recently indicated that TLR7 is able to induce CD4+T cell anergy, which is the opposite of the role it plays in innate immune cells. Therefore, TLR7 ligands may be used as a manner in which to induce CD4+T cells "tolerance" in autoimmune diseases. T follicular helper (Tfh) cells were demonstrated to be a subset of CD4+T cells that help B cells produce antibodies. The abnormal activity of Tfh cells, though, is their function as a primary pathogenic factor in systemic lupus erythematosus (SLE). However, the role of TLR7 in Tfh cells is not clear. Our study was aimed at determining the influence of TLR7 on Tfh cells in a murine model of SLE (MRL/lpr mice). We were surprised to find that the frequency of Tfh cells and germinal center (GC) B cells was significantly reduced after treatment with the TLR7 agonist imiquimod. Imiquimod also significantly reduced the expression of inducible costimulatory molecule (ICOS) and programmed death 1(PD-1) in Tfh cells and decreased IL-21 secretion. Moreover, imiquimod significantly reduced the mRNA expression of several transcription factors, including Bcl-6, c-Maf, Batf3, Nfatc2 and Stat3, and enhanced the expression of Prdm1 and Stat5b in CD4+T cells. Imiquimod also ameliorated the progression of SLE in MRL/lpr mice by inhibiting anti-dsDNA antibodies and antinuclear antibody (ANA) secretion in the serum. Our findings indicated that TLR7 inhibited the development of Tfh cells both in vivo and ex vivo, which depended on many transcription factors aside from Bcl-6. Our results demonstrated that a TLR7 agonist has the potential to be used to inhibit Tfh cell responses during SLE. V.Novel 1,2,3,4-tetrahydroquinoline derivatives with N-alkanoyl, N-benzoyl, or chlorobenzoyl substituents were designed and synthesized to inhibit nuclear factor-kappa B (NF-κB) known to be involved in the regulation of many immune and inflammatory responses. These compounds have been pr