We find that AT concentrations of these chemicals are neither significantly different between visceral and SC fat depots nor between women and men. However, AT bio-accumulation of distinct POPs significantly correlates with AT macrophage infiltration, adipocyte size and parameters of glucose metabolism. In both fat depots, the strongest correlations of POPs (Ethyl- tetradecanoate, 4,4'-Diisopropylbiphenyl, 2-Phenyltetralin, 2,2',4,4',5,5'-Hexachlorobiphenyl, Hexachlorobenzene) and AT macrophage infiltration were detected in lean individuals. In men with obesity, abundance of POPs correlated with the duration of obesity. https://www.selleckchem.com/products/Eloxatin.html Additional significant associations between AT POPs and parameters of glycemia, insulin sensitivity, and inflammation suggest that specific environmental chemicals may contribute to AT dysfunction, adipocyte hypertrophy, impaired glucose metabolism, systemic inflammation and variation in fat distribution, but not to obesity.Foreknowledge of the air quality indicators (i.e. AQI, PM2.5, PM10, SO2, CO, NO2, and O3) provides decision-makers a possibility for building an early-warning system and tailoring related policies and plans accordingly so as to reduce the negative influences of these pollutants. However, accurate forecasts are hardly obtained because strong seasonal variations in meteorological circumstances can largely give rise to seasonal fluctuations in the time series of these indicators, which are difficult to be described and extracted by traditional forecasting tools. To address such issues, a seasonal nonlinear grey Bernoulli model is developed to provide skillful forecasts, which can effectively grasp the nonlinear and seasonal features. Subsequently, this paper elaborates on the model and method used for parameter estimations. For validation and verification purposes, operational seasonal forecasts of the air quality indicators in the four representative cities (Shanghai, Hangzhou, Nanjing, and Hefei) in the Yangtze River Delta are performed, in comparison with five prevalent forecasting tools including SFGM(1,1), SGM(1,1), LSSVM, SARIMA, and BPNN. Results show that the proposed model outperforms other competitors in improving the prediction accuracy of the seasonal air quality changes. Thus, the verified model is recommended to produce future estimations of the air quality indicators in the Yangtze River Delta from 2020 to 2021, revealing that Shanghai, Hangzhou, and Hefei will have better air quality than before, while Nanjing will be subjected to a poorer one. Eventually, some suggestions related to the prevention of atmospheric pollution are provided to further improve air quality.A wide variety of chemical compounds are used in human activities; however, part of these compounds reach surface water, groundwater and even water considered for potable uses. Due to the limited efficiency of water treatment by the Water and Wastewater Treatment Plants, the presence of these compounds in natural and human consumption waters can be very harmful due to their high persistence and adverse effects; these characteristics define the contaminants of emerging concern (CECs). Water treatment by Electrochemical Advanced Oxidation Processes (EAOPs) has been evaluated as a promising process for the removal of persistent and recalcitrant organic contaminants. With this background, the present review aims to gather studies and information published between 2015 and 2020 regarding the occurrence of CECs in surface, potable and groundwater, its treatment by EAOPs, the main operating conditions and by-product generation of EAOPs, contaminant toxicity assessments and international statutory guideline values concerning CEC standards and allowable concentrations in the environment and treated drinking water. Therefore, in this review it was found that the compounds bisphenol A (BPA), diethyltoluamide (DEET), 17α-ethinyl estradiol (EE2), perfluorobutanoic acid (PFBA), carbamazepine, caffeine and atrazine were the most frequently detected in water sources, with concentrations ranging from 35.54-4800, 1.21-98, 0.005-38.5, 5-742.904, 0.0071-586, 0.89-1040, and 100-323 (ng L-1), respectively. Among the operational conditions of EAOPs, current density, pH and oxidant concentration are the main operational parameters that have an influence on these treatment technologies, besides the by-products generated, which might be removed by the integration of EAOPs with biological digestion treatments. Regarding the values of water quality standards, many CECs do not have established standard allowable concentration values, which represents a concern toward the possible toxic effects of these compounds on non-target organisms.Various water transmitting media are related to highly variable water source compositions, which limit the understanding of the aquifer structure and hydrological processes in a karst catchment. This study aims to understand the variation in water contribution by matrix, fissure, and conduit flows during storm and seasonal scales based on discharge, electrical conductivity (EC), and nitrate measurements of stream water in a typical dolomite catchment during 2017-2018 and discusses the hydrological response mechanism of a karst aquifer to rainfall characteristics. Time-series analyses of discharge and EC indicated that the rapid response time (mean lag time less then 1 h) was mainly controlled by rainfall intensity, and the lag time decreased significantly when the rainfall intensity was lower than 15 mm/h. However, the mean discharge was dominated by the rainfall amount and antecedent moisture state. Hydrograph separation based on nitrate indicates that the contribution of soil water was irrelevant for recharging the stream during a non-rain period, whereas epikarst water contributed more than 83.2% of the total flow during a rainfall event. As indicated by the EC frequency distribution analyses, the contribution ratios of the surface, conduit, fissure, and matrix flows were 11.82.17.1, 11.65.36.3, and 0001 during stormy, heavy, and light rainfall events, respectively. These parameters indicate that the degree of karstification was low in the karst aquifer. Seasonal frequency distribution analyses of EC indicate that higher rainfall amounts and rainfall intensities during the wet season promoted the contribution of conduit flow to approximately 11.4% of the total flow; however, matrix flow dominated the recharge of the streamflow and its contribution was more than 55.6% during each season. Our results suggest that the permeability of the epikarst matrix dominates the storage and transfer functions in dolomite karst aquifers with low karstification.