https://www.selleckchem.com/products/k-975.html Based on an analysis of the precision and preparation technology of an optical texture film with a triangular pyramid texture, the technical requirements of the original mold were determined, and precision shaping planning technology was adopted to process the original mold. The shape error of the optical texture mold of the triangular pyramid was assessed by defining the area ratio of the retro-reflection. The influence of the tool nose radius and exit burr on the area ratio of the retro-reflection were analyzed. By optimizing the cutting tools, cutting materials and cutting boundaries, a five-axis ultra-precision machining system was used to plan the triangular pyramid structure with a base length of 115 µm and an included angle between two sides of 70.5°. The experimental results indicate that the dimension error of the triangular pyramid element is less than 1 µm, the angle error of the included angle between two sides is less than 0.05°, and the average roughness of the side of the triangular pyramid can reach 9.2 nm, which satisfies the processing quality requirements of the triangular pyramid texture mold.Lens-based optical microscopes cannot resolve the sub-wavelength objects overpass diffraction limit. Recently, research on super-resolution imaging has been conducted to overcome this limitation in visible wavelength using solid immersion lenses. However, IR imaging, which is useful for chemical imaging, bio-imaging, and thermal imaging, has not been studied much in optical super-resolution by solid immersion lens owing to material limitations. Herein, we present the design and fabrication schemes of microscale silicon solid immersion lenses (µ-SIL) based on thin-film geometry for mid-infrared (MIR) applications. Compared with geometrical optics, a rigorous finite-difference time-domain (FDTD) calculation of proposed silicon microlenses at MIR wavelengths shows that the outstanding short focal lengths result in