Chemical speciation can fundamentally affect the potential toxicity and bioavailability of heavy metals. The transformation of heavy metal speciation and change of bioavailability were investigated in an anaerobic digestion (AD) system using four different substrates (pig manure (PM), cattle manure (CAM), chicken manure (CHM) and rice straw (RS)). The results obtained indicated that the total contents of heavy metals in PM, CHM and CAM were higher than in RS and decreased in the order Zn > Cu > Ni > Pb > As > Cd in all substrates. Moreover, the speciation with the largest proportion for each heavy metal was the same both in the different substrates and the biogas residues. Among them, Zn, Ni, Cd and As were mainly in the reducible fraction (F2), while Cu was mainly in the oxidizable fraction (F3) and Pb occurred predominantly in the residual fraction (F4). Our results further indicated that the AD process had a greater effect on the speciation of heavy metals in CHM and PM, but less on CAM and RS. The rates of change in bioavailability followed the order PM > CHM > CAM > RS. Changes in organic matter, humic acid or local metal ion environment as a result of AD were inferred as likely mechanisms leading to the transformation of heavy metal speciation. These results enhanced our understanding of the behavior of heavy metals in AD and provided a new perspective for the treatment and disposal of the substrates.Cu-Co multiple-oxides modified on HNO3-pretreated activated coke (ACN) were optimized for the simultaneous removal of gaseous CO and elemental mercury (Hg0) at low temperature ( less then 200 °C). It was found that 2%CuOx-10%CoOx/ACN catalyst calcined at 400°C resulted in the coexistence of complex oxides including CuO, Cu2O, Co3O4, Co2O3 and CoO phases, which might be good for the simultaneous catalytic oxidation of CO by Co-species and removal of Hg0 by Cu-species, benefiting from the synergistic catalysis during the electro-interaction between Co and Cu cations (CoO ⇌ Co3O4 and Cu2O ⇌ CuO). The catalysis removal of CO oxidation was obviously depended on the reaction temperature obtaining 94.7% at 200 °C, while no obvious promoting effect on the Hg0 removal (68.3%-78.7%). These materials were very substitute for the removal of CO and Hg° from the flue gas with the conditions of 8-20 vol.% O2 and flue-gas temperature below 200 °C. The removal of Hg° followed the combination processes of adsorption and catalytic oxidation reaction via Langmuir-Hinshelwood mechanism, while the catalysis of CO abided by the Mars-van Krevelen mechanism with lattice oxygen species.Pyrite is the most abundant sulfide semiconductor mineral with excellent optical properties. However, few reports have investigated its photocatalytic activity because of the low photogenerated carrier separation efficiency. In this work, a Z-scheme FeS2/Fe2O3 composite photocatalyst was fabricated in situ via structural transformation of pyrite through heat treatment. A remarkably enhanced photocatalytic performance was observed over the FeS2/Fe2O3 composite photocatalyst. Compared with the pristine pyrite, the degradation efficiency of carbamazepine (CBZ) reached 65% at the added hexavalent chromium (Cr(Ⅵ)) concentration of 20 mg/L and the Cr(Ⅵ) was nearly completely reduced in the mixed system using FeS2/Fe2O3 within 30 min under simulated solar light irradiation. The enhanced photocatalytic activity can be attributed to the efficient separation and transfer of photogenerated carriers in the FeS2/Fe2O3 composite photocatalyst. This facilitated the generation of •OH, hole (h+) and •O2- species, which participated in the photocatalytic reaction with CBZ. Based on the measurement of the active species and electric properties, a Z-scheme electron transfer pathway was proposed for the FeS2/Fe2O3 composite photocatalyst. This work broadens the application potential of pyrite in environmental remediation.The increase of electrical resistance (ER) and energy consumption (EC) during the later stage of dewatering is a major problem hindering the development of electro-dewatering (EDW) technology. As the variations of sludge characteristics are significant during the EDW process, the relationships between sludge characteristics and ER and EC during EDW remain unclear. In this study, the effects of moisture content (MC), thickness, pH, conductivity, zeta potential, temperature, and gas volume on the ER and EC during the EDW process were statistically investigated using correlation and multiple linear regression analyses. https://www.selleckchem.com/products/motolimod-vtx-2337.html Herein, the results showed that the ER of the sludge near the anode was primarily affected by pH, whereas the sludge near the cathode was primarily affected by the MC and conductivity. Further, sludge temperature and conductivity were the most reliable indicators to predict the EC near the anode and cathode, respectively. The results of this study provide theoretical guidance useful for solving the increase of ER and EC during the later stage of the EDW process.This work assessed the impact of fuelling an automotive engine with palm biodiesel (pure, and two blends of 10% and 20% with diesel, B100, B10 and B20, respectively) operating under representative urban driving conditions on 17 priority polycyclic aromatic hydrocarbon (PAH) compounds, oxidative potential of ascorbic acid (OPAA), and ecotoxicity through Daphnia pulex mortality test. PM diluted with filtered fresh air (WD) gathered in a minitunel, and particulate matter (PM) collected directly from the exhaust gas stream (W/oD) were used for comparison. Results showed that PM collecting method significantly impact PAH concentration. Although all PAH appeared in both, WD and W/oD, higher concentrations were obtained in the last case. Increasing biodiesel concentration in the fuel blend decreased all PAH compounds, and those with 3 and 5 aromatic rings were the most abundant. Palm biodiesel affected both OPAA and ecotoxicity. While B10 and B20 exhibited the same rate of ascorbic acid (AA) depletion, B100 showed significant faster oxidation rate during the first four minutes and oxidized 10% more AA at the end of the test. B100 and B20 were significantly more ecotoxic than B10. The lethal concentration LC50 for B10 was 6.13 mg/L. It was concluded that palm biodiesel decreased PAH compounds, but increased the oxidative potential and ecotoxicity.