https://www.selleckchem.com/products/itd-1.html Synthetic gels with switchable interfacial properties have great potential in smart devices and controllable transport. Herein, we design an organogel by incorporating a binary liquid mixture with an upper critical solution temperature (UCST) into a polymer network, resulting in reversible modulation of lubrication and adhesion properties. As the temperature changes, the lubricating mechanism changes reversibly from boundary lubrication to hydrodynamic lubrication due to the phase separation within the binary solution permeating the gel (friction coefficient from 0.4 to 0.03). Droplets appear on the gel surface at low temperature and disappear when the temperature is higher than the critical phase separation temperature (T ps ) of organogel. This organogel possesses a relatively low ice adhesive strength (less than 1 kPa). This material has potential applications in anti-icing and smart devices, and we believe that this design strategy can be expanded to other systems such as aqueous solution and hydrogels. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.INTRODUCTION Metabolomics provide a promising tool to understand the pathogenesis and to identify novel biomarkers of dementia. This study aimed to determine circulating metabolites associated with incident dementia in a Chinese cohort, and whether a selected metabolite panel could predict dementia. METHODS Thirty-eight metabolites in baseline serum were profiled by nuclear magnetic resonance in 1440 dementia-free participants followed 5 years in the Shanghai Aging Study. RESULTS Higher serum levels of glutamine and O-acetyl-glycoproteins were associated with increased risk of dementia, whereas glutamate, tyrosine, acetate, glycine, and phenylalanine were negatively related to incident dementia. A panel of five metabolites selected by least absolute shrinkage and selection operator within cross-validation regression analysis could predict incident dementia with an ar