https://www.selleckchem.com/products/Vorinostat-saha.html This study examined the effects of two or four weekly campus board training sessions among highly accomplished lead climbers. Sixteen advanced-to-elite climbers were randomly allocated to two (TG2), or four weekly campus board training sessions (TG4), or a control group (CG). All groups continued their normal climbing routines. Pre- and post-intervention measures included bouldering performance, maximal isometric pull-up strength using a shallow rung and a large hold (jug), and maximal reach and moves to failure. Rate of force development (RFD; absolute and 100ms) was calculated in the rung condition. TG4 improved maximal force in the jug condition (effect size (ES) = 0.40, p = 0.043), and absolute RFD more than CG (ES = 2.92, p = 0.025), whereas TG2 improved bouldering performance (ES = 2.59, p = 0.016) and maximal moves to failure on the campus board more than CG (ES = 1.65, p = 0.008). No differences between the training groups were found (p = 0.107-1.000). When merging the training groups, the training improved strength in the rung condition (ES = 0.87, p = 0.002), bouldering performance (ES = 2.37, p = 0.006), maximal reach (ES = 1.66, p = 0.006) and moves to failure (ES = 1.43, p = 0.040) more than CG. In conclusion, a five-week campus board training-block is sufficient for improving climbing-specific attributes among advanced-to-elite climbers. Sessions should be divided over four days to improve RFD or divided over two days to improve bouldering performance, compared to regular climbing training.It is important to use short breaks to accelerate post-exercise recovery in sports. Previous studies have revealed that vibration can reduce post-exercise muscle soreness. However, there is still high heterogeneity in the effects of vibration on cardiovascular autonomic activities, and most studies to date have focused on high-frequency vibration. This study aimed to investigate the effect of low-frequency low