https://www.selleckchem.com/products/2-aminoethyl-diphenylborinate.html The at-line models were further tested in real time on samples collected during the milling of ribbons. The correlation between the predicted and achieved values was good; however, it was time and formulation dependent.Recently developed medicated dressings target either bacterial or fungal infection only, which is not effective for the treatment of mixed infections common in diabetic foot ulcers (DFUs). This study aimed to develop advanced bioactive alginate-based dressings (films and wafers) to deliver therapeutically relevant doses of ciprofloxacin (CIP) and fluconazole (FLU) to target mixed bacterial and fungal infections in DFUs. The alginate compatibility with the drugs was confirmed by SEM, XRD, FTIR and texture analysis, while the medicated wafers showed better fluid handling properties than the films in the presence of simulated wound fluid. The dressings showed initial fast release of FLU followed by sustained release of CIP which completely eradicated E. coli, S. aureus, P. aeruginosa and reduced fungal load (C. albicans) by 10-fold within 24 h. Moreover, the medicated dressings were biocompatible (>70% cell viability over 72 h) with human primary adult keratinocytes and in-vitro scratch assay showed 65-68% wound closure within 7 days.The impact of mixing method in conventional co-precipitation synthesis of layered double hydroxides (LDHs), on particle size, size distribution and drug loading capacity is reported. Synthesis of Mg (II)/Mn (III)-LDH nano-platelets was performed at constant pH using three different mixing systems, magnetic stirrer, mechanical mixer, and homogenizer at ambient temperature and a fixed Mg/Mn ratio of 3/1. The LDH characterization results showed that mechanical mixing and homogenization lead to production of very fine LDH nano-platelets (about 90-140 nm), with narrow particle size distribution. Amount of the intercalated drug was determined as about 60% and