The aim of this study is to identify novel tumor-associated antigens (TAAs) of lung cancer by using serological analysis of recombinant cDNA expression library (SEREX) and bioinformatics analysis as well as to explore their humoral immune response. SEREX and pathway enrichment analysis were used to immunoscreen TAAs of lung cancer and elaborate their function in biological pathways, respectively. Subsequently, the sera level of autoantibodies against the selected TAAs (TOP2A, TRIM37, HSP90AB1, EEF1G and TPP1) was detected by immunoserological analysis to explore the immune response of these antigens. The Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas (HPA) database were applied to explore the mRNA and protein expression level of TOP2A, TRIM37 and HSP90AB1 in tissues, respectively. Seventy positive clones were identified by SEREX which contain 63 different genes, and 35 genes of them have been reported. These 35 genes were mainly related to regulation of different transcription factor and performed enrichment in legionellosis, RNA transport, IL-17 signaling pathway via enrichment analysis. Additionally, the positive rate of autoantibodies against TOP2A, TRIM37 and HSP90AB1 in lung cancer patients were typically higher than normal control (NC; P less then 0.05). Moreover, the combination of the autoantibodies against TOP2A, TRIM37 and HSP90AB1 possessed an excellent diagnostic performance with sensitivity of 84% and specificity of 60%. The mRNA expression level of TOP2A was obviously unregulated in squamous cell carcinoma (SCC) tissues and adenocarcinoma (ADC) tissues compared to normal tissues (P less then 0.05). In addition, TRIM37 and HSP90AB1 also showed a significant difference between SCC and NC at the mRNA expression level (P less then 0.05). This study combining comprehensive autoantibody and gene expression assays has added to the growing list of lung cancer antigens, which may aid the development of diagnostic and immunotherapeutic targets for lung cancer patients.Embryonic tissue boundaries are critical to not only cement newly patterned structures during development, but also to serve as organizing centers for subsequent rounds of morphogenesis. Although this latter role is especially difficult to study in vivo, synthetic embryology offers a new vantage point and fresh opportunities. In this review, we cover recent progress towards understanding and controlling in vitro boundaries and how they impact synthetic model systems. A key point this survey highlights is that the outcome of self-organization is strongly dependent on the boundary imposed, and new insight into the complex functions of embryonic boundaries will be necessary to create better self-organizing tissues for basic science, drug development, and regenerative medicine. Acute mountain sickness (AMS) is a benign and self-limiting syndrome but can progress to life-threatening conditions if leave untreated. This study aimed to assess the efficacy of acetazolamide for the prophylaxis of AMS and disclose potential factors that affect the treatment effect of acetazolamide. Randomized controlled trials comparing the use of acetazolamide versus placebo for the prevention of AMS were included. The incidence of AMS was the primary endpoint. Meta-regression analysis was conducted to explore potential factors associated with acetazolamide efficacy. Trial sequential analysis (TSA) was conducted to estimate the statistical power of the available data. A total of 22 trials were included. Acetazolamide at 125, 250, and 375mg/ twice daily (bid) significantly reduced incidence of AMS compared to placebo. TAS indicated that the current evidence was adequate confirming the efficacy of acetazolamide at 125, 250, and 375mg/bid in lowering incidence of AMS. There was no evidence of an association between efficacy and dose of acetazolamide, timing at start of acetazolamide treatment, mode of ascent, AMS assessment score, timing of AMS assessment, baseline altitude, and endpoint altitude. Acetazolamide is effective prophylaxis for the prevention of AMS in doses of 125, 250, and 375mg/bid. Future investigations should focus on personal characteristics, disclosing the correlation between acetazolamide efficacy and body mass, height, degree of prior acclimatization, individual inborn susceptibility, and history of AMS. Acetazolamide is effective prophylaxis for the prevention of AMS in doses of 125, 250, and 375 mg/bid. https://www.selleckchem.com/ Future investigations should focus on personal characteristics, disclosing the correlation between acetazolamide efficacy and body mass, height, degree of prior acclimatization, individual inborn susceptibility, and history of AMS.The clinical course and rate of progression of interstitial lung disease (ILD) are extremely variable among patients. For the purpose of monitoring disease activity, ILD diagnosis, and predicting disease prognosis, there are various biomarkers, including symptoms, physiological, radiological, and pathological findings, and peripheral blood and bronchoalveolar lavage fluid results. Of these, blood biomarkers such as sialylated carbohydrate antigen, surfactant proteins-A and -D, CC-chemokine ligand 18, matrix metalloprotease-1 and -7, CA19-9, and CA125 have been previously proposed. In the future, heme oxygenase-1 (HO-1) may also become a candidate ILD biomarker; it is a 32-kDa heat shock protein converting heme to carbon monoxide, biliverdin/bilirubin, and free iron to play a role in the pulmonary cytoprotective reaction in response to various stimuli. Recent research suggests that HO-1 can increase in lung tissues of patients with ILD, reflecting anti-inflammatory M2 macrophage activation, and the measurement of HO-1 levels in peripheral blood can be useful for evaluating the severity of lung damage in ILD and for predicting subsequent fibrosis formation.This manuscript aimed to describe and analyze acute trimethyltin poisoning caused by exposure to polyvinyl chloride production and review the literature. Combined with an analysis of occupational hygiene survey data, the clinical data of 8 cases of acute trimethyltin poisoning were analyzed retrospectively. The clinical manifestations of acute trimethyltin poisoning are mainly related to central nervous system damage, hypokalemia and metabolic acidosis in patients with severe poisoning. Early positive potassium supplementation and symptomatic treatment are beneficial to the improvement of the condition. The early recognition of central nervous system manifestations and hypokalemia is beneficial for early diagnosis and correct treatment.