https://www.selleckchem.com/products/Aurora-A-Inhibitor-I.html Lipase-catalyzed hydrolytic kinetic resolution is a method of obtaining optically pure chiral alcohols and amines, which requires additional tools for determining enantiomerical purity. Herein, we present a study on multigram-scale hydrolytic kinetic resolution of trans-2-azidocyclohexyl acetate using Pseudomonas cepacia lipase immobilized on Immobead support. We investigated several parameters of the preparative-scale process temperature, organic co-solvent, and the influence of calcium ions. Moreover, we have developed an efficient fluorenylmethyloxycarbonyl chloride (Fmoc-Cl) derivatization protocol for 2-azidocyclohexanol, which enabled chiral reversed-phase high-performance liquid chromatography (RP-HPLC) determination of enantiomeric excess. Laryngoscopy, the most common diagnostic method for vocal cord lesions (VCLs), is based mainly on the visual subjective inspection of otolaryngologists. This study aimed to establish a highly objective computer-aided VCLs diagnosis system based on deep convolutional neural network (DCNN) and transfer learning. To classify VCLs, our method combined the DCNN backbone with transfer learning on a system specifically finetuned for a laryngoscopy image dataset. Laryngoscopy image database was collected to train the proposed system. The diagnostic performance was compared with other DCNN-based models. Analysis of F1 score and receiver operating characteristic curves were conducted to evaluate the performance of the system. Beyond the existing VCLs diagnosis method, the proposed system achieved an overall accuracy of 80.23%, an F1 score of 0.7836, and an area under the curve (AUC) of 0.9557 for four fine-grained classes of VCLs, namely, normal, polyp, keratinization, and carcinoma. It also demonstrated robust cgoscopy as a highly objective auxiliary method.An enantioselective domino process for the synthesis of substituted 1,2-dihydronaphthalenes has been developed by