https://www.selleckchem.com/products/sr-18292.html The presence of antibiotic residues in the food chain may pose a serious risk to human health. Locating and evaluating new sources of consumer exposure to antibiotic residues in food is a very important element of health protection. The possibility of doxycycline uptake from the substrate for mushroom cultivation by the white button mushroom (Agaricus bisporus) fruit body was investigated. Mushrooms were experimentally cultivated on substrate contaminated with 8 different doxycycline concentrations in substrate and analyte concentrations in mushroom samples were measured using ultra-high performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-MS/MS) The obtained results clearly indicated that doxycycline transfers from contaminated substrate to mushrooms at concentrations ranging from 0.87 to 72.3 µg/kg, depending on substrate contamination concentration level and order of harvesting. Sugar replacement is still an active issue in the food industry. The use of structure-taste relationships remains one of the most rational strategy to expand the chemical space associated to sweet taste. A new machine learning model has been setup based on an update of the SweetenersDB and on open-source molecular features. It has been implemented on a freely accessible webserver. Cellular functional assays show that the sweet taste receptor is activated in vitro by a new scaffold of natural compounds identified by the in silico protocol. The newly identified sweetener belongs to the lignan chemical family and opens a new chemical space to explore. Here, we constructed a fast, universal, "turn-on" biosensor for the highly sensitive visual detection of Salmonella based on luminescent DNAzyme and a universal blocking linker Super Polymerase Chain Reaction (S-PCR). The primer in this biosensor was specially designed. The G-quadruplex sequence is attached to the 5' end of the primer by a blocking linker and is