An operationally simple and sustainable one-pot photo-oxidative formal [3 + 2] heterocyclization of β-ketothioamides with aryldiazonium salts catalyzed by Ru(bpy)3Cl2 has been realized to provide 2,4-disubstituted 5-imino-1,2,3-thiadiazoles in good to high yields under mild reaction conditions for the first time. https://www.selleckchem.com/products/lenalidomide-s1029.html The reaction proceeded via an α-phenylhydrazone adduct of thioamides leading to 1,2,3-thiadiazoles via N-S bond formation at room temperature. Notably, the products possess Z-stereochemistry with regard to the exocyclic C═N double bond at the 5-position of the ring.Understanding the self-assembly mechanisms of amphiphilic molecules in solutions and regulating their phase behaviors are of primary significance for their applications. To challenge the reported direct phase transitions from nonlamellar to ordered lamellar phases, the self-assembly and phase behavior of the 1-hexadecyl-3-methylimidazolium chloride aqueous dispersions were studied using a strategy of isothermal incubation after the temperature jump. A disordered lamellar phase (identified as the lamellar liquid-crystal (Lα) phase), serving as an intermediate, was found to bridge the transition from a spherical micellar (M) phase to a lamellar-gel (Lβ) phase. Meanwhile, the nonsynchronicity in the tail and headgroup regions of the ionic liquid surfactant during the transition process was also unveiled, with the former being prior to the latter. The in-depth understanding of the self-assembly mechanisms may help push forward the related applications in the future.We demonstrate nonadiabatic Thouless pumping of electrons in trans-polyacetylene in the framework of Floquet engineering using first-principles theory. We identify the regimes in which the quantized pump is operative with respect to the driving electric field for a time-dependent Hamiltonian. By employing the time-dependent maximally localized Wannier functions in real-time time-dependent density functional theory simulation, we connect the winding number, a topological invariant, to a molecular-level understanding of the quantized pumping. While the pumping dynamics constitutes the opposing movement of the Wannier functions that represent both double and single bonds, the resulting current is unidirectional due to the greater number of double-bond electrons. Using a gauge-invariant formulation called dynamical transition orbitals, an alternative viewpoint on the nonequilibrium dynamics is obtained in terms of the particle-hole excitation. A single time-dependent transition orbital is found to be largely responsible for the observed quantized pumping. In this representation, the pumping dynamics manifests itself in the dynamics of this single orbital as it undergoes changes from its π bonding orbital character at equilibrium to acquiring resonance and antibonding character in the driving cycle. The work demonstrates the Floquet engineering of the nonadiabatic topological state in an extended molecular system, paving the way for experimental realization of the new quantum material phase.Icephobic surfaces have gained immense attention owing to their significant roles in decreasing the energy consumption of refrigerators and in improving safety issues by preventing the formation of ice on them. Superhydrophobic surfaces incorporating micro- or nanoscale roughness and hydrophobic functional groups have been shown to prevent ice accumulation. Herein, we report a simple, low-cost, and solution-based one-step process for the production of superhydrophobic surfaces with three-dimensional (3D) self-assembled structures. The controlled hydrolysis and polycondensation of n-octadecyltrichlorosilane (OTS-Cl) in an acetone solution produced a highly uniform superhydrophobic surface on various substrates such as glass, metals, and polymers without the limitation of the surface curvature structure. The as-prepared 3D self-assembled surface exhibited a very high contact angle of 161.7° and a low contact hysteresis of 1.47°. The solvent type, H2O content in acetone, and carbon chain length of the silane comic surfaces on a wide range of substrates regardless of their structure and properties.Growing evidence has shown that some pharmaceutical excipients can act on drug transporters. The present study was aimed at investigating the effects of 13 commonly used excipients on the intestinal absorption of metformin (MTF) and the underlying mechanisms using Caco-2 cells and an ex vivo mouse non-everted gut sac model. First, the uptake of MTF in Caco-2 cells was markedly inhibited by nonionic excipients including Solutol HS 15, polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80, and crospovidone. Second, transport profile studies showed that MTF was taken up via multiple cation-selective transporters, among which a novel pyrilamine-sensitive proton-coupled organic cation (H+/OC+) antiporter played a key role. Third, Solutol HS 15, polysorbate 40, and polysorbate 60 showed cis-inhibitory effects on the uptake of either pyrilamine (prototypical substrate of the pyrilamine-sensitive H+/OC+ antiporter) or 1-methyl-4-phenylpyridinium (substrate of traditional cation-selective transporters including OCTs, MATEs, PMAT, SERT, and THTR-2), indicating that their suppression on MTF uptake is due to the synergistic inhibition toward multiple influx transporters. Finally, the pH-dependent mouse intestinal absorption of MTF was significantly decreased by Solutol HS 15, polysorbate 20, polysorbate 40, polysorbate 60, polysorbate 80, and pyrilamine. In conclusion, this study revealed that a novel transport process mediated by the pyrilamine-sensitive H+/OC+ antiporter contributes to the intestinal absorption of MTF in conjunction with the traditional cation-selective transporters. Mechanistic understanding of the interaction of excipients with cation-selective transporters can improve the formulation design and clinical application of cationic drugs.Lead-free halide double perovskites have attracted considerable attention as complements to lead-based halide perovskites in a range of optoelectronic applications. Experiments on Cs2AgBiBr6 indicate carrier mobilities in the range of 0.3-11 cm2/(V s) at room temperature, considerably lower than in lead-based perovskites. The origin of low mobilities is currently unclear, calling for an atomic-scale investigation. We report state-of-the-art ab initio calculations of the phonon-limited mobility of charge carriers in lead-free halide double perovskites Cs2AgBiX6 (X = Br, Cl). For Cs2AgBiBr6, we obtain room-temperature electron and hole mobilities of 17 and 14 cm2/(V s), respectively, in line with experiments. We demonstrate that the cause for the lower mobility of this compound, compared to CH3NH3PbI3, resides in the heavier carrier effective masses. A mode-resolved analysis of scattering rates reveals the predominance of Fröhlich electron-phonon scattering, similar to lead-based perovskites. Our results indicate that, to increase the mobility of lead-free perovskites, it is necessary to reduce the effective masses, for example by cation engineering.