https://www.selleckchem.com/products/pf-00835231.html RNA offers nearly unlimited potential as a target for small molecule chemical probes and lead medicines. Many RNAs fold into structures that can be selectively targeted with small molecules. This Perspective discusses molecular recognition of RNA by small molecules and highlights key enabling technologies and properties of bioactive interactions. Sequence-based design of ligands targeting RNA has established rules for affecting RNA targets and provided a potentially general platform for the discovery of bioactive small molecules. The RNA targets that contain preferred small molecule binding sites can be identified from sequence, allowing identification of off-targets and prediction of bioactive interactions by nature of ligand recognition of functional sites. Small molecule targeted degradation of RNA targets (ribonuclease-targeted chimeras, RIBOTACs) and direct cleavage by small molecules have also been developed. These growing technologies suggest that the time is right to provide small molecule chemical probes to target functionally relevant RNAs throughout the human transcriptome.The low-frequency vibrational fundamentals of D2h inorganic oxides are readily modeled by heuristic scaling factors at fractions of the computational cost compared to explicit anharmonic frequency computations. Oxygen and the other elements in the present study are abundant in geochemical environments and have the potential to aggregate into minerals in planet-forming regions or in the remnants of supernovae. Explicit quartic force field computations at the CCSD(T)-F12b/cc-pVTZ-F12 level of theory generate scaling factors that accurately predict the anharmonic frequencies with an average error of less than 1.0 cm-1 for both the metal-oxygen stretching frequencies and the torsion and antisymmetric stretching frequencies. Inclusion of hydrogen motions are less absolutely accurate but are similarly relatively predictive. The fundamental