https://www.selleckchem.com/products/XL765(SAR245409).html Lastly, a positive correlation was noted between the PAHs removal efficiency and soluble EPS concentration (R2 = 0.85), indicating the important role of dissolved and colloidal matter (DCM) for PAHs partitioning between aqueous and particulate phases.Contamination encountered on nuclear sites includes radionuclides as well as a range of non-radioactive co-contaminants, often in low-permeability substrates such as concretes or clays. However, many commercial remediation techniques are ineffective in these substrates. By contrast, electrokinetic remediation (EKR), where an electric current is applied to remove contaminants from the treated media, retains high removal efficiencies in low permeability substrates. Here, we evaluate recent developments in EKR for the removal of radionuclides in contaminated substrates, including caesium, uranium and others, and the current benefits and limitations of this technology. Further, we assess the present state of EKR for nuclear site applications using real-world examples, and outline key areas for future application.In recent years, the overuse of antibiotics has caused more and more serious environmental pollution, the uncontrolled abuse of antibiotics makes bacteria produce resistance to antibiotics faster than the replacement rate of antibiotics themselves, leading to the emergence of super drug-resistant bacteria. Therefore, it is of great practical significance to establish a simple, rapid and sensitive method for the detection of antibiotics. By integrating natural nano-clay (Atta) and carbon dots (CDs), the real-time and rapid visual detection of tetracycline (TC) in the sample can be realized by chromaticity pick-up APP on smartphone. The nano-sensor can detect tetracycline in the concentration between 25 nM and 20 μM with the detection limit of 8.7 nM. The low detection limit coupled with good accuracy, sensitivity and specificity meets the requirements for the