The guideline recommendations involve a broadened range of patients requiring TDM, modified index of TDM (both 24-hour area under the curve and trough concentration), addition regarding the necessity and timing of repeated TDM, and initial dose for specific subpopulations. https://www.selleckchem.com/products/necrosulfonamide.html Overall, 1 recommendation was deleted and 3 recommendations were modified. Eleven new recommendations were added, and no recommendation was made for 2 clinical questions. We updated an evidence-based guideline regarding the TDM of vancomycin using a rigorous and multidisciplinary approach. The updated guideline provides more comprehensive recommendations to inform rational and optimized vancomycin use and is thus of greater applicability. We updated an evidence-based guideline regarding the TDM of vancomycin using a rigorous and multidisciplinary approach. The updated guideline provides more comprehensive recommendations to inform rational and optimized vancomycin use and is thus of greater applicability.The Chinese guidelines for IAI presented here were developed by a panel that included experts from the fields of surgery, critical care, microbiology, infection control, pharmacology, and evidence-based medicine. All questions were structured in population, intervention, comparison, and outcomes format, and evidence profiles were generated. Recommendations were generated following the principles of the Grading of Recommendations Assessment, Development, and Evaluation system or Best Practice Statement (BPS), when applicable. The final guidelines include 45 graded recommendations and 17 BPSs, including the classification of disease severity, diagnosis, source control, antimicrobial therapy, microbiologic evaluation, nutritional therapy, other supportive therapies, diagnosis and management of specific IAIs, and recognition and management of source control failure. Recommendations on fluid resuscitation and organ support therapy could not be formulated and thus were not included. Accordingly, additional high-quality clinical studies should be performed in the future to address the clinicians' concerns. Considering the increasing incidence of carbapenem-resistant Enterobacteriaceae in China, this study aimed to establish the in vitro effectiveness of imipenem/relebactam (IMI/REL) on clinical Enterobacteriaceae isolates derived from intra-abdominal infections (IAIs), respiratory tract infections (RTIs), and urinary tract infections (UTIs) in China between 2015 and 2018. In total, 8781 Enterobacteriaceae isolates from IAI, RTI, and UTI samples were collected from 22 hospitals across 7 geographic regions of China. Susceptibility to antimicrobial drugs was tested using the Clinical and Laboratory Standards Institute broth microdilution and breakpoints, and IMI/REL activity was assessed using United States Food and Drug Administration guidelines. In 2015-2018, the most frequently identified Enterobacteriaceae species was Escherichia coli (n = 4676 [53.3%]), followed by Klebsiella pneumoniae (n = 2949 [33.6%]) and Enterobacter cloacae (n = 542 [6.2%]). The Enterobacteriaceae isolates showed 95.2% overall susceptibility to IMI/REL, of which the susceptibility rates in isolates from IAI, RTI, and UTI were 95.8%, 91.4%, and 96.6%, respectively. Overall, the susceptibilities of both intensive care unit (ICU) and non-ICU Enterobacteriaceae isolates to colistin were 92.9%, followed by IMI/REL (90.7% [95.9%]) and amikacin (83.3% [92.3%]). In addition, IMI/REL restored 66.3% susceptibility in imipenem-nonsusceptible Enterobacteriaceae. Given their high in vitro susceptibility, Enterobacteriaceae infections in China should be considered for IMI/REL treatment, especially with isolates that are not susceptible to carbapenems. Given their high in vitro susceptibility, Enterobacteriaceae infections in China should be considered for IMI/REL treatment, especially with isolates that are not susceptible to carbapenems.More than 3 decades have passed since infection control was implemented nationwide in China in 1986. A comprehensive set of regulations and guidelines has been developed, and almost all hospitals have established infection control teams. However, compliance is variable and is usually suboptimal. The incidence of certain multidrug-resistant organisms (MDROs), including carbapenem-resistant Acinetobacter baumannii (CRAB) and carbapenem-resistant Klebsiella pneumoniae (CRKP), is increasing, and associated infections are mainly hospital-acquired in China. Carbapenem-resistant Pseudomonas aeruginosa has remained relatively stable, whereas methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterobacter faecium have been decreasing. The spread of CRAB and CRKP in China is largely mediated by dominant high-risk lineages, namely, clonal complex 92 for CRAB and sequence type 11 for CRKP. However, challenges owing to MDROs bring opportunities for rethinking, taking coordinated action, building capacity, changing behavior, and performing studies that reflect everyday situations in the Chinese healthcare system. Handwashing sinks can become contaminated by carbapenem-resistant Klebsiella (CRK), including carbapenem-resistant Klebsiella pneumoniae (CRKP) and carbapenem-resistant Klebsiella oxytoca (CRKO), but whether they are major sources of CRK infections remains unknown. We performed a prospective multicenter study in 16 intensive care units (ICUs) (9 general and 7 neonatal) at 11 hospitals. All sinks at these locations were sampled to screen CRK. All CRK clinical isolates recovered between 2 weeks before and 3 months after sampling in ICUs with CRK-positive sinks or other participating ICUs at the same hospital were collected. Whole-genome sequencing of all isolates was performed. Isolates of the same sequence type (ST) were assigned to clones by calling single-nucleotide polymorphisms. Among 158 sinks sampled, 6 CRKP and 6 CRKO were recovered from 12 sinks in 7 ICUs, corresponding to a 7.6% CRK contamination rate. Twenty-eight clinical isolates were collected, and all were CRKP. The 34 CRKP isolates belonged to 7 STs, including ST789 (n = 14, all had blaNDM-5); ST11 (n = 12, 5 belonged to KL64 and 7 to KL47, all had blaKPC-2); ST709 (n = 4, all had blaNDM-5); and ST16, ST20, ST1027, and ST2407 (n = 1 each). One particular ST789 clone caused an outbreak and contaminated a sink. ST11_KL47 sink isolates were likely the source of a cluster of clinical isolates. Two ST11_KL64 isolates belonged to a common clone but were from 2 hospitals. Contaminated sinks were not the major source of CRK in our local settings. ST789 blaNDM-5-carrying CRKP might represent an emerging lineage causing neonatal infections. Contaminated sinks were not the major source of CRK in our local settings. ST789 blaNDM-5-carrying CRKP might represent an emerging lineage causing neonatal infections.