https://www.selleckchem.com/products/mitomycin-c.html Fusarium oxysporum f. sp. lactucae, the cause of Fusarium wilt of lettuce, can survive on crop residue in soil. Persistence of the pathogen over time will be influenced by the rate at which residue decomposes. We evaluated the effect of drying and fragmenting crop residue on the rate of decomposition and survival of F. oxysporum f. sp. lactucae. In a controlled experiment that represented optimal drying conditions, fragmenting and oven drying infested lettuce taproots at 30°C significantly reduced the frequency of recovery of the pathogen, compared with untreated tissue. However, in a field experiment, drying infested crop residue on the soil surface prior to incorporation did not significantly reduce survival of F. oxysporum f. sp. lactucae after 1 year. Regardless of treatment, there was not a significant decrease in soil inoculum density between 1 and 12 months after residue was incorporated. In a greenhouse experiment, fragmenting crop residue prior to incorporation in pathogen-free soil resulted in significantly higher inoculum densities of F. oxysporum f. sp. lactucae after 1 year. The increase in inoculum levels was associated with a faster rate of residue decomposition, which may be beneficial in the long run but not where lettuce will be replanted within the next year.Guinea grass is an invasive perennial C4 grass and is a common weed around agricultural crops in Louisiana, Texas, and Hawaii, USA (Overholt and Franck 2019). In November 2018, leaf spots were observed on Guinea grass occurring in an organic garden located in Gainesville, Florida, USA. Lesions were oblong to irregular, dark grey to brownish center with pale-yellow to brownish black margin. Lesions had coalesced, forming necrotic margins that spread from the leaf tip, resulting in leaf blight and collapse of the canopy. Pieces of symptomatic leaf blades (5 sq cm) were surface sterilized (1 min), washed with sterile distilled water and plated