https://www.selleckchem.com/products/cdk2-inhibitor-73.html Furthermore, an Arrhenius model is shown to capture tissue damage observed in the experiments. Increase in applied power was found to correlate with tissue cutting and concentrated damage near the electrode, but had little effect on the observed coagulation damage width. The proposed model provides, for the first time, an accurate tool for predicting temperature rise and evolving damage resulting from a moving electrode in pure-cut electrosurgery.Harsh conditions within the tumor microenvironment, such as hypoxia and extracellular acidic pH (pHe), inactivate some chemotherapies, which results in limited or no cytotoxicity. Standard MTT, ATPlite and protease assays that are used to determine the potency of newly developed drugs often give erroneous results when applied under hypoxic or acidic conditions. Therefore, development of a cytotoxicity assay that does not yield false positive or false negative results under circumstances of both hypoxia and acidic pHe is needed. We evaluated currently used cell viability assays as well as neutral red staining to assess viability of ovarian and pancreatic cancer cells grown in an acidic pHe microenvironment after treatment with carboplatin, gemcitabine or chloroquine. We validated cell viability using western blotting of pro-caspase-9 and cleaved-caspase-9, and LC3-I and - II. Standard cell viability assays indicated cell viability accurately at pHe 7.4, but was not correlated with induction of apoptosis or autophagy at acidic pHe. By contrast, our modified neutral red assay detected cell viability accurately over a range of pHe as demonstrated by its correlation with induction of apoptosis and autophagy. Neutral red staining is effective for evaluating the effect of chemotherapeutic agents on cell viability under acidic pHe or hypoxic conditions. Urinary incontinence, the involuntary loss of urine, is a common condition that affects approximately 50% of adult women.