https://www.selleckchem.com/products/l-alpha-phosphatidylcholine.html Microtubules, the largest and stiffest filaments of the cytoskeleton, have to be well adapted to the high levels of crowdedness in cells to perform their multitude of functions. Furthermore, fundamental processes that involve microtubules, such as the maintenance of the cellular shape and cellular motion, are known to be highly dependent on external pressure. In light of the importance of pressure for the functioning of microtubules, numerous studies interrogated the response of these cytoskeletal filaments to osmotic pressure, resulting from crowding by osmolytes, such as poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO) molecules, or to direct applied pressure. The interpretation of experiments is usually based on the assumptions that PEG molecules have unfavorable interactions with the microtubule lattices and that the behavior of microtubules under pressure can be described by using continuous models. We probed directly these two assumptions. First, we characterized the interaction between the main interfaces in a microtubule filament and PEG molecules of various sizes using a combination of docking and molecular dynamics simulations. Second, we studied the response of a microtubule filament to compression using a coarse-grained model that allows for the breaking of lattice interfaces. Our results show that medium length PEG molecules do not alter the energetics of the lateral interfaces in microtubules but rather target and can penetrate into the voids between tubulin monomers at these interfaces, which can lead to a rapid loss of lateral interfaces under pressure. Compression of a microtubule under conditions corresponding to high osmotic pressure results in the formation of the deformed phase found in experiments. Our simulations show that the breaking of lateral interfaces, rather than the buckling of the filament inferred from the continuous models, accounts for the deformation.Criegee