https://www.selleckchem.com/products/gcn2-in-1.html In recent years, high-performance half-Heusler compounds have been developed as promising thermoelectric materials for power generation. Aiming at practical device applications, one key step is to seek suitable metal electrodes so that low interfacial resistivity is guaranteed under long-term thermal aging. In the previous work, the fresh Mo/Nb0.8Ti0.2FeSb junction was found exhibiting low contact resistivity below 1 μΩ cm2; however, it increased by tens of times under long-term thermal aging, mainly originating from the formation of the high-resistivity FeSb2 phase and the appearance of cracks. Here, the Mo-Fe electrodes are employed to build the junctions with Nb0.8Ti0.2FeSb. The interfacial behavior and contact resistance in these junctions were investigated both before and after the thermal aging. Interestingly, no obvious formation of FeSb2 phase and cracks were observed. As a result, the contact resistivity was below ∼1 μΩ cm2 after 15 days' thermal aging, indicating better connection reliability and lower contact resistivity compared to the Mo/Nb0.8Ti0.2FeSb junction. These findings highlight the applicability of Mo-Fe electrodes and pave the way for NbFeSb-based half-Heusler thermoelectric materials for device applications.An efficient approach to a functionalized bicyclo[2.2.2]octan-2-one scaffold has been developed through a one-pot cascade process including amino acid involved successive Michael addition and decarboxylative-Mannich sequence. Starting from α,β-unsaturated ketones and amino acids, a series of desired products 7a-7m and 8a-8o were obtained with moderate yields. In addition, the tandem process was reasonably explained by the results of DFT calculations.Formal hydroperfluoroalkylation of enones is achieved in a two-step process comprising conjugate hydroboration and subsequent radical perfluoroalkylation. The 1,4-hydroboration of the enone is conducted in the absence of any transition metal c