https://www.selleckchem.com/products/CI-1040-(PD184352).html Long noncoding RNA (lncRNA) CRNDE has been broadly implicated in many malignancies. The aim of this study was to explore the function and potential mechanisms of CRNDE in nasopharyngeal carcinoma (NPC). Here, we discovered that CRNDE level was increased in NPC tissues and cell lines. Additionally, elevated CRNDE positively correlated with large tumor size, advanced TNM stage, distant metastasis, EBV infection and worse prognosis. Furthermore, depletion of CRNDE significantly impaired the capacity of proliferation, migration and invasion in NPC cells. Mechanically, CRNDE could serve as a molecular sponge of miR-3163 to regulate the expression of TWIST1. Importantly, the inhibitory effects of CRNDE knockdown on cell proliferation and metastasis were blocked by silence of miR-3163 or restoration of TWIST1 expression. Overall, our data highlighted that CRNDE could promote NPC progression via altering miR-3163/TWIST1 axis, suggesting CRNDE as a potential prognostic biomarker and therapeutic target for NPC treatment.Research on microbial fatty acid metabolism started in the late 1960s, and till date, various developments have aided in elucidating the fatty acid metabolism in great depth. Over the years, synthesis of microbial fatty acid has drawn industrial attention due to its diverse applications. However, fatty acid overproduction imparts various stresses on its metabolic pathways causing a bottleneck to further increase the fatty acid yields. Numerous strategies to increase fatty acid titres in Escherichia coli by pathway modulation have already been published, but the stress generated during fatty acid overproduction is relatively less studied. Stresses like pH, osmolarity and oxidative stress, not only lower fatty acid titres, but also alter the cell membrane composition, protein expression and membrane fluidity. This review discusses an overview of fatty acid synthesis pathway and presents a panoramic vie