https://www.selleckchem.com/products/sch-442416.html The excess energy of subsurface hydrogen species may facilitate overcoming reaction barriers and remarkably alters the reaction pathways. We present an in-depth study on the different reactivity of surface and subsurface hydrogen species in syngas methanation on the O/C-covered Pd(100) by using density functional theory calculations and microkinetic simulations. It is shown that the apparent energy barriers to form H2O and CH4 are reduced by 0.87 and 0.61 eV for the case in which the hot subsurface hydrogen species are involved in the whole hydrogenation process. The activity of O-covered Pd(100) is better than that of the C-covered surface, and the reactivity of subsurface hydrogen species is much higher than that of surface hydrogen species under ambient conditions. Increasing CO partial pressure strongly enhances the reactivity of subsurface hydrogen species in syngas methanation on the O-covered Pd(100). These important results are helpful for understanding the hot-atom mechanism through subsurface heterogeneous catalysis.External driving of the Fermion reservoirs interacting with a nanoscale charge-conductor is shown to enhance its mechanical stability during resonant tunneling. This counterintuitive cooling effect is predicted despite the net energy flow into the device. Field-induced plasmon oscillations stir the energy distribution of charge carriers near the reservoir's chemical potentials into a nonequilibrium state with favored transport of low-energy electrons. Consequently, excess heating of mechanical degrees of freedom in the conductor is suppressed. We demonstrate and analyze this effect for a generic model of mechanical instability in nanoelectronic devices, covering a broad range of parameters. Plasmon-induced stabilization is suggested as a feasible strategy to confront a major problem of current-induced heating and breakdown of nanoscale systems operating far from equilibrium.Acetic acid adsorp