Spatiotemporal implant-bone biomechanics and mechanoadaptive strains in peri-implant tissue are poorly understood. https://www.selleckchem.com/products/zidesamtinib.html Physical and chemical characteristics of an implant-bone complex (IBC) were correlated in three-dimensional space (along the length and around a dental implant) to gather insights into time related integration of the implant with the cortical portion of jaw bone in a rat. Rats (N = 9) were divided into three experimental groups with three rats per time point 3-, 11-, and 24-day. All rats were fed crumbled hard pellets mixed with water (soft-food diet) for the first 3 days followed by a hard-food diet with intact hard-food pellets (groups of 11- and 24-day only). Biomechanics of the IBCs harvested from rats at each time point was evaluated by performing mechanical testing in situ in tandem with X-ray imaging. The effect of physical association (contact area) of a loaded implant with adapting peri-implant tissue, and resulting strain within was mapped by using digital volume correlation (DVC) techn of mineral density, and elemental colocalization underscore mechanoadaptive physicochemical properties of peri-implant tissue that facilitate functional osseointegration of an implant. These results provided insights into 1) plausible "prescription" of mechanical loads as an osteoinductive "therapeutic dose" to encourage osteoconductive elements in the IBC that would facilitate functional osseointegration of the implant; 2) a "critical temporal window" between 3 and 11 days, and perhaps it is this acute phase during which key candidate regenerative molecules can be harnessed to accelerate osseointegration of an implant under load. BACKGROUND Individuals with cerebral palsy (CP) are vulnerable to non-trauma fracture (NTFx) and have an elevated burden of cardiovascular disease (CVD) related morbidity and mortality. However, very little is known about the contribution of NTFx to CVD risk among adults with CP. The purpose of this study was to determine if NTFx is a risk factor for CVD among adults with CP and if NTFx exacerbates CVD risk compared to adults without CP. METHODS Data from 2011 to 2016 Optum Clinformatics® Data Mart and a random 20% sample Medicare fee-for-service were used for this retrospective cohort study. Diagnosis codes were used to identify adults (18+ years) with and without CP, NTFx, incident CVD up to 2 years (i.e., ischemic heart disease, heart failure, cerebrovascular disease), and pre-NTFx comorbidities. Crude incidence rates per 100 person years of CVD measures were estimated. Cox regression estimated hazard ratios (HR and 95% confidence interval [CI]) for CVD measures, comparing (1) CP and NTFx (CP + NTFx; n = 1 Findings suggest that NTFx is a risk factor for CVD among adults with CP. BACKGROUND Vorolanib (X-82, CM082) is a multi-target tyrosine kinase inhibitor. This study aimed to evaluate the tolerability, safety, pharmacokinetics and antitumor activities of vorolanib plus everolimus (an inhibitor of mammalian target of rapamycin). METHODS Patients had histologically or cytologically confirmed advanced RCC and failed with standard therapy were eligible for this study. Dose-escalated combinations of vorolanib (100, 150 or 200 mg once daily) with everolimus (5 mg once daily) were administered on 28-day cycles until disease progression or unacceptable toxicity using a conventional 3 + 3 dose-escalation design. FINDINGS 22 patients (100 mg n = 4, 150 mg n = 3, 200 mg n = 15) were enrolled. Only one patient experienced dose-limiting toxicity (DLT, grade 4 thrombocytopenia) in the vorolanib 200 mg combination cohort, and the maximum tolerated dose (MTD) was not reached. The most common treatment-related adverse events were proteinuria (100%), leukopenia (77%), hypercholesterolaemia (77%), increased low-density lipoprotein (68%), hypertriglyceridaemia (64%), hyperglycaemia (59%), and fatigue (55%). Most treatment-related adverse events were grade 1 to 2, with grade 3 or higher toxicities mostly seen in the 200 mg cohort. Single dosing of vorolanib demonstrated dose-proportional increases in the Cmax and AUC, and observed short t1/2z ranging from 4.74±1.44 to 12.89±7.49 h. The pharmacokinetic parameters for everolimus were similar among all cohorts. Of 19 evaluable patients, the ORR and DCR was 32% (n = 6, 95% CI, 13-57%) and 100% (95% CI, 82-100%), respectively. INTERPRETATION Combination therapy of vorolanib 200 mg plus everolimus 5 mg once daily is potentially effective with potential activity. Further evaluation of the combination in advanced RCC patients is ongoing (NCT03095040). FUNDING Betta Pharmaceutical Co., Ltd., Hangzhou, China. BACKGROUND Atherosclerosis involves a slow process of plaque formation on the walls of arteries, and comprises a leading cause of cardiovascular disease. Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of atherosclerosis. In this study, we aim to explore the possible involvement of lncRNA 'cyclin-dependent kinase inhibitor 2B antisense noncoding RNA' (CDKN2B-AS1) and CDKN2B in the progression of atherosclerosis. METHODS Initially, we quantified the expression of CDKN2B-AS1 in atherosclerotic plaque tissues and, in THP-1 macrophage-derived, and human primary macrophage (HPM)-derived foam cells. Next, we established a mouse model of atherosclerosis using apolipoprotein E knockout (ApoE-/-) mice, where lipid uptake, lipid accumulation, and macrophage reverse cholesterol transport (mRCT) were assessed, in order to explore the contributory role of CDKN2B-AS1 to the progression of atherosclerosis. RIP and ChIP assays were used to identify interactions between CDKN2B-AS1, CCCTC-binding factor (CTCF), enhancer of zeste homologue 2 (EZH2), and CDKN2B. Triplex formation was determined by RNA-DNA pull-down and capture assay as well as EMSA experiment. FINDINGS CDKN2B-AS1 showed high expression levels in atherosclerosis, whereas CDKN2B showed low expression levels. CDKN2B-AS1 accelerated lipid uptake and intracellular lipid accumulation whilst attenuating mRCT in THP-1 macrophage-derived foam cells, HPM-derived foam cells, and in the mouse model. EZH2 and CTCF were found to bind to the CDKN2B promoter region. An RNA-DNA triplex formed by CDKN2B-AS1 and CDKN2B promoter was found to recruit EZH2 and CTCF in the CDKN2B promoter region and consequently inhibit CDKN2B transcription by accelerating histone methylation. INTERPRETATION The results demonstrated that CDKN2B-AS1 promotes atherosclerotic plaque formation and inhibits mRCT in atherosclerosis by regulating CDKN2B promoter, and thereby could be a potential therapeutic target for atherosclerosis.