These materials have the ability to address a broad range of nanofiltration applications, while structure-property considerations suggest several avenues for potential performance improvements.Constructing composite electrodes is considered to be a feasible way to realize high-specific-capacity Li-ion batteries. The core-double-shell-structured Si@C@TiO2 would be an ideal design for such batteries, considering that carbon (C) can buffer the volume change and TiO2 can constrain the structural deformation of Si. https://www.selleckchem.com/products/dinaciclib-sch727965.html Although the electrochemical performance of the shells themselves is relatively clear, the complexity of the multishell heterointerface always results in an ambiguous understanding about the influence of the heterointerface on the electrochemical properties of the core material. In this work, a multilayer film model that can simplify and simultaneously expand the area of the heterointerface is used to study the heterointerfacial behavior. First, a multilayer film TiO2/C with different numbers of TiO2/C heterointerfaces is studied. It shows that the electrochemical performance is enhanced apparently by increasing the number of TiO2/C heterointerfaces. On the one hand, the TiO2/C heterointerface exhibits a strong lithium-ion storage capacity. On the other hand, the TiO2/C heterointerface appears to effectively promote the local Li-ion concentration gradient and thus boost the Li-ion transport kinetics. Then, TiO2/C is combined with Si to construct a composite anode Si/C/TiO2. An obvious advantage of TiO2/C over single TiO2 and C is observed. The utilization rate of Si is greatly improved in the first cycle and reaches up to 98% in Si/C/TiO2. The results suggest that the electrochemical performance of Si can be greatly manipulated by the heterointerface between the multishells.Lead halide perovskites have been promising materials for lasing applications. Despite that a series of perovskite microlasers have been reported, their lasing modes are confined by either the as-grown morphology or the etched boundary. The first one is quite random and incompatible with integration, whereas the latter one strongly spoils the laser performances. Herein, we propose and experimentally demonstrate a robust and generic mechanism to realize well-controlled perovskite microlasers without the etching process. By patterning a one-dimensional polymer grating onto a perovskite film, we show that the symmetry-protected bound states in the continuum (BICs) can be formed in it. The intriguing properties of BICs including a widely spread mode profile and high Q factor, associated with the exceptional gain of perovskite, produce single-mode microlasers with high repeatability, controllability, directionality, and a polarization vortex. This mechanism can also be extended to two-dimensional nanostructures, enabling BIC lasers with different topological charges.In situ cross-linked hydrogels have the advantage of effectively fulfilling the wound in its shape and depth. Amongst the new generation of natural-based biopolymers being proposed for wound care and skin regeneration, silk sericin is particularly interesting due to its exceptional properties such as biocompatibility, biodegradability, and antioxidant behavior, among others. In this study, a new enzyme-mediated cross-linked hydrogel composed of silk sericin is proposed for the first time. The developed hydrogel cross-linking strategy was performed via horseradish peroxidase, under physiological conditions, and presented gelling kinetics under 3 min, as demonstrated by its rheological behavior. The hydrogels presented a high degree of transparency, mainly due to their amorphous conformation. Degradation studies revealed that the hydrogels were stable in phosphate buffer solution (PBS) (pH 7.4) for 17 days, while in the presence of protease XIV (3.5 U/mg) and under acute and chronic physiological pH values, the stability decreased to 7 and 4 days, respectively. During protease degradation, the present sericin hydrogels demonstrated antioxidant activity. In vitro studies using an L929 fibroblast cell line demonstrated that these hydrogels were noncytotoxic, promoting cell adhesion and massive cell colonization after 7 days of culture, demonstrating that cells maintained their viability and proliferation. In addition, the application of sericin-based hydrogel in an in vivo diabetic wound model validated the feasibility of the in situ methodology and demonstrated a local anti-inflammatory effect, promoting the healing process. This study presents a simple, fast, and practical in situ approach to produce a sericin-based hydrogel able to be applied in low exudative chronic wounds. Moreover, the study herein reported fosters the valorization of a textile industrial by-product by its integration in the biomedical field.Bioresorbable implantable electronics require power sources that are also bioresorbable with controllable electrical output and lifetime. In this paper, we report a bioresorbable zinc primary battery anode filament based on a zinc microparticle (MP) network coated with chitosan and Al2O3 double shells. When discharged in 0.9% NaCl saline, a Zn MP filament with a 0.17 × 2 mm2 cross-sectional area exhibited a stable voltage output of 0.55 V at a current of 0.01 mA. Covered by chitosan and Al2O3 double shells, the zinc MP filament exhibited a directional dissolution behavior with a tunable lifetime approximately linear to its length. A stable 200 h discharging time was achieved with a 15 mm Zn MP filament. The maximum output power was found to be 12 μW at 0.03 mA for one filament. The linearity relationship between the current output and the filament cross-sectional area suggested a facile strategy to raise the power output at constant discharging voltage. The filaments could also be connected in series and in parallel to boost its overall voltage and current output, demonstrating their excellent integration capability. This work presents a promising pathway toward bioresorbable transient batteries with controllable lifetime and power output, demonstrating a great potential for powering transient implantable biomedical devices.