Copyright © 2020 Das, Bastian, Trestan, Suh, Dey, Trapp, Baltan and Dana.Sprouty2 (Spry2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are both well-established regulators of receptor tyrosine kinase (RTK) signaling, and knockdown of Spry2 or PTEN enhances axon regeneration of dorsal root ganglia (DRG) neurons. The major role of Spry2 is the inhibition of the rat sarcoma RAS/extracellular signal-regulated kinase (ERK) pathway, whereas PTEN acts mainly as an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In non-neuronal cells, Spry2 increases the expression and activity of PTEN, and PTEN enhances the amount of Spry2 by the inhibition of the microRNA-21 (miR-21) that downregulates Spry2. Applying dissociated DRG neuron cultures from wild-type (WT) or Spry2 deficient mice, we demonstrate that PTEN protein was reduced after 72 h during rapid axonal outgrowth on the laminin substrate. Furthermore, PTEN protein was decreased in DRG cultures obtained from homozygous Spry2-/- knockout mice. Vice versa, Spry2 protein was reduced by PTEN siRNA in WT ande single inhibitor of axon growth. Copyright © 2020 Jamsuwan, Klimaschewski and Hausott.C-bouton-type cholinergic afferents exert an important function in controlling motoneuron (MN) excitability. During the immunocytochemical analysis of the role of c-Jun in MNs with a monoclonal (clone Y172) antibody against phospho (p)-c-Jun (serine [Ser]63), unexpected labeling was identified in the cell body cytoplasm. As predicted for c-Jun in adult spinal cord, very few, if any MNs exhibited nuclear immunoreactivity with the Y172 antibody; conversely, virtually all MNs displayed strong Y172 immunostaining in cytoplasmic structures scattered throughout the soma and proximal dendrites. The majority of these cytoplasmic Y172-positive profiles was closely associated with VAChT-positive C-boutons, but not with other types of nerve afferents contacting MNs. Ultrastructural analysis revealed that cytoplasmic Y172 immunostaining was selectively located at the subsurface cistern (SSC) of C-boutons and also in the inner areas of the endoplasmic reticulum (ER). We also described changes in cytoplasmic Y172 immunoreather than p-c-Jun. Our results lay the foundation for further studies aimed at identifying this protein and determining its role in this particular type of synapse. Copyright © 2020 Gatius, Tarabal, Cayuela, Casanovas, Piedrafita, Salvany, Hernández, Soler, Esquerda and Calderó.Astrocytes are multifunctional cells in the CNS, involved in the regulation of neurovascular coupling, the modulation of electrolytes, and the cycling of neurotransmitters at synapses. Induction of astrocytes from stem cells remains a largely underdeveloped area, as current protocols are time consuming, lack granularity in astrocytic subtype generation, and often are not as efficient as neural induction methods. In this paper we present an efficient method to differentiate astrocytes from mouse embryonic stem cells. Our technique uses a cell suspension protocol to produce embryoid bodies (EBs) that are neurally inducted and seeded onto laminin coated surfaces. Plated EBs attach to the surface and release migrating cells to their surrounding environment, which are further inducted into the astrocytic lineage, through an optimized, heparin-based media. Characterization and functional assessment of the cells consists of immunofluorescent labeling for specific astrocytic proteins and sensitivity to adenosine triphosphate (ATP) stimulation. Our experimental results show that even at the earliest stages of the protocol, cells are positive for astrocytic markers (GFAP, ALDH1L1, S100β, and GLAST) with variant expression patterns and purinergic receptors (P2Y). Generated astrocytes also exhibit differential Ca2+ transients upon stimulation with ATP, which evolve over the differentiation period. Metabotropic purinoceptors P2Y1R are expressed and we offer preliminary evidence that metabotropic purinoceptors contribute to Ca2+ transients. Our protocol is simple, efficient and fast, facilitating its use in multiple investigations, particularly in vitro studies of engineered neural networks. Copyright © 2020 Juneja, Nasuto and Delivopoulos.Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. https://www.selleckchem.com/products/Erlotinib-Hydrochloride.html These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development. Copyright © 2020 Subramanian, Calcagnotto and Paredes.Our general understanding of neuronal function is that dendrites receive information that is transmitted to the axon, where action potentials (APs) are initiated and propagated to eventually trigger neurotransmitter release at synaptic terminals. Even though this canonical division of labor is true for a number of neuronal types in the mammalian brain (including neocortical and hippocampal pyramidal neurons or cerebellar Purkinje neurons), many neuronal types do not comply with this classical polarity scheme. In fact, dendrites can be the site of AP initiation and propagation, and even neurotransmitter release. In several interneuron types, all functions are carried out by dendrites as these neurons are devoid of a canonical axon. In this article, we present a few examples of "misbehaving" neurons (with a non-canonical polarity scheme) to highlight the diversity of solutions that are used by mammalian neurons to transmit information. Moreover, we discuss how the contribution of dendrites and axons to neuronal excitability may impose constraints on the morphology of these compartments in specific functional contexts.