https://www.selleckchem.com/products/gf109203x.html This work aimed to conduct a first PCR-based approach for differential diagnosis of kinetoplastidean infections in dogs. Diagnosis of Kinetoplastid infections in domestic animals is difficult, since parasitemia is intermittent and signs are nonspecific; it is mainly based on parasitological smears or concentration techniques, which lack sensitivity and depend on operator` expertise. Dogs are relevant reservoirs in transmission of Kinetoplastids; they function as sentinels to detect active transmission cycles before they involve humans. Trypanosoma cruzi, Trypanosoma evansi, and various species of Leishmania genus are multi-host parasites, capable of parasitizing dogs among a vast number of reservoirs. An algorithm based on sequential Real-Time PCR-High Resolution Melting (HRM) (qPCR-HRM) assays directed at 24S alpha ribosomal DNA, ITS1 and Hsp70 designed to distinguish among T. cruzi, T. rangeli, T. evansi and Leishmania spp. was tested in fourteen dogs with suspicion of kinetoplastid diseases. A qPCR control of DNA integrity in the tested sample, targeted to the mammalian interphotoreceptor retinoid-binding protein (IRBP) gene fragment was incorporated to the algorithm. T. evansi was detected in four dogs and L. infantum in one. Two of five qPCR positive cases were smear negative. Smear and T. evansi qPCR positive cases corresponded to animals that died despite being treated, indicating the association of parasitemia with disease severity. This laboratory tool increases the possibility of confirming outbreaks of kinetoplastid diseases with zoonotic potential and identify the etiological agents involved.The European wild rabbit Oryctolagus cuniculus is a widespread mammal that may act as host for ectoparasites and reservoir for some vector-borne pathogens. Study aims were to investigate the arthropod fauna that may infect the European wild rabbit, to assess the ecological indexes and to investigate tick preferred a