https://www.selleckchem.com/products/mg149.html EEM fluorescence spectra identified fulvic-like fluorophores at the highest intensity level in the EEM fluorescence spectra of the haze samples. A peak at excitation/emission (Ex/Em) ≈ (290-330)/(375-425) nm is also observed at high intensity, though this peak is normally associated with marine humic-like fluorophores. It is shown that a peak at Ex/Em ≈ (290-330)/(375-425) nm is not derived from marine sources only; furthermore, peatland fires are shown to be important contributors to HULIS around this peak.The hydrological response of forest soil in the Mediterranean environment is characterised by high runoff and erosion rates, mainly due to low infiltration and high repellency of soils. However, little literature exists about the effects of forest ages on soil water repellency (SWR) and hydraulic conductivity (SHC). This study evaluates these hydrological parameters in five Pinus nigra Arn ssp. Salzmannii stands of different ages in Central-Eastern Spain; one of these stands, unmanaged, was chosen as reference system. SWR (measured in terms of water drop penetration time, WDPT) and SHC as well as the main physico-chemical properties and surface characteristics of soils were surveyed in forty-five plots. Water infiltration was higher in the older stands (including the older and unmanaged forest) and lower (by over 60%) in the more recent pine forests. Four of the studied stands did not show water repellency; only the more recent plantation showed a slight SWR. The differences in SHC among the forest ages were mainly driven by the organic matter (OM) and nutrient contents of the soils as well as by the bulk density and quantity of dead wood. SWR was similar among the plots (despite significantly differences in WDPTs), although having variable OM contents. Considering these differences in soil properties, SHC and SWR were simply predicted for each forest stand using on dbRDA models and the following soil properties (i)