https://www.selleckchem.com/products/indisulam.html Iron-based metal-organic frameworks (MOFs) with low cost and excellent photocatalytic potential are extremely attractive in the field of energy utilization and environmental remediation. In this study, a novel In2S3/MIL-100(Fe) photocatalyst was successfully synthesized by a facile solvothermal method for the first time. Several technologies (such as X-ray diffraction, scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy) were used to characterize the as-obtained samples and demonstrate the successful combination of MIL-100(Fe) and In2S3. Experimental results showed that 18% of tetracycline (TC) was adsorbed under dark condition and another 70% of TC was degraded under visible-light irradiation when treating 100 mL of TC solution (10 mg/L) with 30 mg of In2S3/MIL-100(Fe) composites. The corresponding TC removal efficiency was almost 1.9 and 1.6 times higher than that of pure MIL-100(Fe) and In2S3, respectively. The mechanism investigations revealed that the heterojunction composite exhibited superior charge transfer than either MIL-100(Fe) or In2S3, and this caused more efficient separation of electron-hole pairs. As a result, more radicals and holes were generated in the composite, leading to better photocatalytic performance. This work highlights the powerful combination of MOFs and semiconductor, which is a promising approach to fabricate heterojunction photocatalyst for wastewater purification. The urgent demands of energy storage for wearable electronics necessitates the development of flexible supercapacitors (FSCs). However, the service environment of portable/wearable devices requires supercapacitors to possess excellent mechanical properties to withstand harsh straining conditions, such as bending, rolling, and twisting. Hence, to develop a high-performance flexible supercapacitor (FSC) that possesses both superior electrochemical properties and remarkable me