Charge transport in an organic semiconductor is strongly dependent on the molecular packing motif, which could be modified by the molecular substitutions and molecular isomerization. We constructed a series of benzodithiophene-based organic semiconductor molecules with different silyethyne substitutions and isomers. The existence of different conformations of these molecules is supported by a low isomerization energy barrier from density functional theory. By using Marcus semiclassical theory calculation, we make a comprehensive assessment for the effect of molecular substitution and isomerization on charge transport. We found that the hole mobility of cis-isomer molecular packing can be enhanced by increasing the length of silylethyne substitutions. We demonstrated that a favorable charge-transport material would possess an identical direction of induced ring currents, stable induced magnetic fields, and dominant π-π stacking interaction in their molecular packing motif to ensure good π-overlap area. Our findings will provide direct guidance for developing organic semiconductor materials.A new hemofiltration system was developed to continuously capture circulating tumor cells (CTCs) from a large volume of whole blood using a column that was packed with antifouling zwitterionized silica microspheres. The silica microspheres were modified with sulfobetaine silane (SBSi) to inhibit fouling, resist clogging, and give a high surface wettability and prolonged operation time. Packed microspheres with different diameters formed size-controllable interstitial pores that effectively captured CTCs by ligand-free size selection. For optimized performance of the hemofiltration system, operational factors, including the size of microspheres, flow rate, and cross-sectional area of the column, were considered with respect to the removal rate for colorectal cancer cells and the retention rate for white blood cells and red blood cells. The captured CTCs were collected from the column by density sedimentation. A large quantity of colorectal cancer cells was spiked into sheep blood, and the sample was circulated for 5 h with a total operational volume of 2 L followed by collection and culture in vitro. The results showed that the proposed hemofiltration device selectively removed abundant CTCs from in vitro circulatory blood. The viable cells were harvested for amplification and potential applications for precision medicine.Here we present a theory of ion aggregation and gelation of room temperature ionic liquids (RTILs). Based on it, we investigate the effect of ion aggregation on correlated ion transport-ionic conductivity and transference numbers-obtaining closed-form expressions for these quantities. The theory depends on the maximum number of associations a cation and anion can form and the strength of their association. To validate the presented theory, we perform molecular dynamics simulations on several RTILs and a range of temperatures for one RTIL. The simulations indicate the formation of large clusters, even percolating through the system under certain circumstances, thus forming a gel, with the theory accurately describing the obtained cluster distributions in all cases. However, based on the strength and lifetime of associations in the simulated RTILs, we expect free ions to dominate ionic conductivity despite the presence of clusters, and we do not expect the percolating cluster to trigger structural arrest in the RTIL.Device stability under illumination is the main obstacle of nonfullerene (NF) organic solar cells for moving toward practical application. ZnO, a generally used electron-transporting layer in inverted cells, is prone to induce the decomposition of NF acceptors under illumination with air mass 1.5 (AM1.5) spectrum, resulting in poor device stability. Herein, we report an aqueous polyethylenimine (a-PEI) modification on the ZnO surface could significantly enhance the stability of the NF organic solar cells. After 1000 h of AM1.5 illumination, the efficiency of the cell without a-PEI modification degrades to 43% of its initial value, while the cell with a-PEI modification could maintain 75% of its initial efficiency. The a-PEI modification reduces the number of surface defects with reduced adsorbed oxygen ZnO surface, faster work function recovery kinetics after UV irradiation, and suppressed electron spin resonance response. The reduction of surface defects is beneficial to the stability of NF acceptors on ZnO and also device performance.Triplet dynamic nuclear polarization (triplet-DNP) achieves nuclear spin polarization at moderate temperatures by using spin polarization of photoexcited triplet electrons. The applications of triplet-DNP for biomolecules have been hampered because acenes, the only polarizing agents used so far, tend to aggregate and lose their polarization in biomolecular matrices. Here, we report for the first time use of porphyrins as polarizing agents of triplet-DNP and propose a new concept of aggregation-tolerant polarizing agents. Sodium salts of tetrakis(4-carboxyphenyl)porphyrin (TCPPNa) can be dispersed in amorphous as well as crystalline biomolecular matrices, and importantly, it can generate polarized triplet electrons even in a slightly aggregated state. Triplet-DNP of crystalline erythritol containing slightly aggregated TCPPNa can achieve more than 120-fold signal enhancement. https://www.selleckchem.com/autophagy.html Because TCPPNa is also the first biocompatible triplet-DNP polarizing agent, this work provides a crucial step forward for the biological and medical applications of triplet-DNP.The synthesis and thermal redox chemistry of the first antimony (Sb)- and bismuth (Bi)-phosphaketene adducts are described. When diphenylpnictogen chloride [Ph2PnCl (Pn = Sb or Bi)] is reacted with sodium 2-phosphaethynolate [Na[OCP]·(dioxane) x ], tetraphenyldipnictogen (Ph2Pn-PnPh2) compounds are produced, and an insoluble precipitate forms from solution. In contrast, when the N-heterocyclic carbene adduct (NHC)-PnPh2Cl is combined with [Na[OCP]·(dioxane) x ], Sb- and Bi-phosphaketene complexes are isolated. Thus, NHC serves as an essential mediator for the reaction. Immediately after the formation of an intermediary pnictogen-phosphaketene NHC adduct [NHC-PnPh2(PCO)], the NHC ligand transfers from the Pn center to the phosphaketene carbon atom, forming NHC-C(O)P-PnPh2 [Pn = Sb (3) or Bi (4)]. In the solid state, 3 and 4 are dimeric with short intermolecular Pn-Pn interactions. When compounds 3 and 4 are heated in THF at 90 and 70 °C, respectively, the pnictogen center PnIII is thermally reduced to PnII to form tetraphenyldipnictines (Ph2Pn-PnPh2) and an unusual bis-carbene-supported OCP salt, [(NHC)2OCP][OCP] (5).